24小时热门版块排行榜    

查看: 401  |  回复: 1

shj2006

木虫 (著名写手)

[求助] 论文被检索了没?谢谢! 已有1人参与

求助,论文被检索了没?

题目:Finite-Time Boundedness for a Class of Delayed Markovian Jumping Neural Networks with Partly Unknown Transition Probabilities

作者:Li Liang


http://www.hindawi.com/journals/aaa/2014/597298/


谢谢!
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

快乐每一天
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

math_math

新虫 (著名写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
shj2006: 金币+10, ★★★★★最佳答案 2014-03-29 15:56:19
已经检索了, 见下面详细检索报告
Finite-Time Boundedness for a Class of Delayed Markovian Jumping Neural Networks with Partly Unknown Transition Probabilities  


作者:Liang, L (Liang, Li)




ABSTRACT AND APPLIED ANALYSIS


文献号: 597298

DOI: 10.1155/2014/597298

出版年: 2014

查看期刊信息

开放获取指标









  
  














摘要

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


关键词

KeyWords Plus:EXPONENTIAL STABILITY ANALYSIS; UNCERTAIN NONLINEAR-SYSTEMS; H-INFINITY CONTROL; VARYING DELAYS; STATE ESTIMATION; STOCHASTIC-SYSTEMS; PASSIVITY ANALYSIS; DISCRETE; STABILIZATION; FEEDBACK


作者信息

通讯作者地址: Liang, L (通讯作者)

Hainan Univ, Coll Informat Sci & Technol, Haikou 570228, Peoples R China.




地址:  

[ 1 ] Hainan Univ, Coll Informat Sci & Technol, Haikou 570228, Peoples R China




电子邮件地址:liangli7841@126.com


基金资助致谢


基金资助机构

授权号

Natural Science Foundation of Hainan province  
111002

查看基金资助信息   




出版商

HINDAWI PUBLISHING CORPORATION, 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA


类别 / 分类

研究方向:Mathematics

Web of Science 类别:Mathematics, Applied; Mathematics


文献信息

文献类型:Article

语种:English

入藏号: WOS:000332227700001

ISSN: 1085-3375

电子 ISSN: 1687-0409



期刊信息


Impact Factor (影响因子):  Journal Citation Reports®


其他信息

IDS 号: AC1AX

Web of Science 核心合集中的 "引用的参考文献": 39

Web of Science 核心合集中的 "被引频次": 0
互助是快乐的!!!!
2楼2014-03-29 15:19:24
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 shj2006 的主题更新
信息提示
请填处理意见