| 查看: 783 | 回复: 3 | ||
wenguilong金虫 (小有名气)
|
[求助]
Li2TiO4化学式对吗?怎么读。可以做负极材料吗 已有2人参与
|
| Li2TiO4化学式对吗?怎么读。可以做负极材料吗 |
» 猜你喜欢
CSC & MSCA 博洛尼亚大学能源材料课题组博士/博士后招生|MSCA经费充足、排名优
已经有6人回复
德国Karlsruhe Institute of Technology招收电化学储能及联合培养CSC博士等
已经有20人回复
分析化学论文润色/翻译怎么收费?
已经有163人回复
德国Karlsruhe Institute of Technology招收电化学储能及联合培养CSC博士
已经有24人回复
德国Karlsruhe Institute of Technology招收电化学储能及联合培养CSC博士
已经有1人回复
固态锂金属电池迁移数计算求助
已经有1人回复
荷兰奈梅亨大学赵文博与Galimberti课题组招收理论计算CSC博士 2000 欧元/月+房补
已经有0人回复
26储能博士申请自荐
已经有22人回复
上海交通大学--宁波东方理工大学电池方向博士招生
已经有10人回复
海南大学全国重点实验室杨金霖老师招收储能电池方向博士生(2026年3月报名,9月入学)
已经有0人回复
海南师范大学2026年博士研究生招收 (在职想提升学历人员可报考) 申请考核制+普通招考
已经有0人回复
» 本主题相关商家推荐: (我也要在这里推广)
2楼2014-02-18 09:46:44
doxxod
木虫 (正式写手)
- 应助: 14 (小学生)
- 金币: 3557.5
- 散金: 200
- 红花: 4
- 帖子: 970
- 在线: 600.9小时
- 虫号: 295732
- 注册: 2006-11-11
- 性别: GG
- 专业: 电化学
3楼2014-02-18 10:59:28
【答案】应助回帖
★
感谢参与,应助指数 +1
wenguilong: 金币+1, ★有帮助 2014-03-06 16:29:36
感谢参与,应助指数 +1
wenguilong: 金币+1, ★有帮助 2014-03-06 16:29:36
|
有篇综述讲钛的,不记得了,有个总结 ----------- http://m.blog.sina.com.cn/s/blog_81440d6f01015y2z.html#page=2 相比现在通用的石墨,氧化钛作为锂电池负极材料有明显的优点也有明显的缺点。 下面比较了不同类型的氧化钛作为负极材料的特点。 ----------------------------------------- Ti-O system in General As compared to graphite, which is commercially used as anode in lithium ion batteries, the Ti-O system has the advantage of high rate and absence of solid electrolyte interphase (SEI) formation, but suffers from its low conductivity. In the following discussion, the maximum theoretical capacity has to be distinguished from practical capacity. All TiO2 have the same max theoretical capacity: LiTiO2, that is, 1 Li per Ti or 336 mAhg-1. However, this theoretical capacity is limited by several parameters such as phase, particle size, etc. B-TiO2 shows the higher practical capacity for similar conditions since Li-ion diffusion is higher. Beta-TiO2 (TiO2-B) - Higher capacity than any other Li-Ti-O system or TiO2 polymorphs - Monoclinic, space group C2/m, parallel channel along [010], corner-sharing TiO6 octahedral - Metastable phase - Favour insertion and diffusion of Li along the channel - Performance strongly depending on microstructure - Synthesis: hydrothermal, sol-gel, solvothermal methods - Problem: rate capacity due to low electron conductivity, can possibly improved by doping Rutile TiO2 - Uptake only <0.1 Li atom per TiO2 at room temperature - The main limitation is the 1-dimention Li-ion diffusion (channel diffusion). If the channel is blocked in one point, the inner part will be lost (hinder the access of Li-ion to the bulk). - A practical capacity for microparticle is 0.1 Li per Ti, but this can be improved by decreasing the particle size or increasing temperature. - Can be improved to 0.7 Li atom (235 mAh/g), reversible 0.55 Li (185 mAh/g) Anatase TiO2 - Uptake 0.5 Li atom per TiO2, further Li-ion (above 0.5 Li) can be inserted only in small nanoparticles or mesopores. - phase transformation due to Li intercalation (from tetragonal to orthorhombic) - 200 mAh/g, 1.7 V - Problem: low conductivity - Solutions: decrease particle size, carbon composite, carbon coating Li4Ti5O12 - spinel structure, band gap 2 eV - most commonly used so far - 3 Li insertion: Li4Ti5O12 + 3Li àLi7Ti5O12 - 3/5 Li atoms per Ti (maximum theoretical capacity of 0.6 Li). - two phase intercalation mechanism - 0.2% volume change, lattice from 0.83595 nm to 0.83538 nm, - 175 mAh/g, 1.55 V - Problem: low conductivity - Solutions: decrease particle size, carbon composite, carbon coating Li2Ti3O7 - ramsdellite-type structure - Fast Li ion conductor - One phase solid solution intercalation - 2.28 Li atom insertion - 2% volume change - 235 mAh/g - Ion doping problem, poor cycling performance Li2Ti6O13 - Monoclinic C2/m space group - good Li ion conductor - >200 mAh/g, 1.5 V - poor cycling performance, significant loss of capacity in the first few cycles |
4楼2014-02-18 17:07:15













回复此楼