²é¿´: 6703  |  »Ø¸´: 238
µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû

°Á˪ѩÔÂ

Ìú¸Ëľ³æ (СÓÐÃûÆø)


[×ÊÔ´] ·ÖÏíwileyͼÊéÒ»±¾£ºDiffusion-controlled Solid State Reactions

Õâ±¾ÊéÔÚalloy£¬thin films£¬nano systemsÕâЩ·½Ãæ½²µÄºÃ¡£


Contents
Editor¡¯s Preface XVII
List of Contributors XIX
1Introduction1
Andriy M. Gusak
2 Nonequilibrium Vacancies and Diffusion-Controlled Processes at
Nanolevel 11
Andriy M. Gusak
2.1 Introduction 11
2.2 Beyond Darken¡¯s Approximation 12
2.3 The Model for Regular Chains of Ideal Vacancies Sinks/Sources 17
2.4 Description of Interdiffusion in Alloys at Random Power of Distributed
Vacancy Sinks 20
2.5 Linear Phase Growth and Nonequilibrium Vacancies 22
2.6 Intermetallic Layer Growth at Imposed Current and Nonequilibrium
Vacancies Damping Effect 25
2.7 Possible Role of Nonequilibrium Vacancies in Spinodal
Decomposition 26
2.8 Nanoshell Collapse 29
2.9 The Role of Nonequilibrium Vacancies in Diffusion Coarsening 32
2.10 Conclusions 34
References 34
3 Diffusive Phase Competition: Fundamentals 37
Andriy M. Gusak
3.1 Introduction 37
3.2 Standard Model and the Anomaly Problem 37
3.3 Criteria of Phase Growth and Suppression: Approximation of
Unlimited Nucleation 45
3.4 Incubation Time 47
3.5 Should We Rely Upon the Ingenuity of Nature? Nucleation Problems
and Meta-Quasi-Equilibrium Concept 49
3.6 Suppression of an Intermediate Phase by Solid Solutions 52
3.6.1 Unlimited Nucleation 53
3.6.2 Finite Rate of Nuclei Formation 54
3.7 Phase Competition in a Model of Divided Couple 55
References 59
4 Nucleation in a Concentration Gradient 61
Andriy M. Gusak
4.1 Introduction 61
4.2 Nucleation in Nonhomogeneous Systems: General Approach 63
4.3 Thermodynamics of the Polymorphic Mode of Nucleation in a
Concentration Gradient 65
4.3.1 Homogeneous Nucleation: General Relations 65
4.3.2 Spherical Nuclei 66
4.3.3 Ellipsoidal Nuclei 68
4.3.4 MC Simulations of the Shape of the Nucleus 70
4.3.5 Stress Effects 71
4.4 Thermodynamics of the Transversal Mode of Nucleation in a
Concentration Gradient 74
4.4.1 Homogeneous Nucleation: General Relations 74
4.5 Thermodynamics of the Longitudinal Mode of Nucleation in a
Concentration Gradient 79
4.6 Nucleation in Systems with Limited Metastable Solubility 81
4.6.1 Nucleation of a Line Compound at the Interface During
Interdiffusion 82
4.6.2 Nucleation in between Dilute Solutions 86
4.6.3 Nucleation in between Two Growing Intermediate Phase Layers 86
4.6.4 Nucleation in between a Growing Intermediate Phase and a Dilute
Solution 88
4.6.5 Application to Particular Systems 91
4.7 Conclusions 95
References 97
5 Modeling of the Initial Stages of Reactive Diffusion 99
Mykola O. Pasichnyy and Andriy M. Gusak
5.1 Introduction 99
5.2 First Phase Nucleation Delay in Al¨CCo Thin Films 100
5.2.1 The Problem of Nucleation in a Concentration Gradient Field 101
5.2.2 Basic Model 102
5.2.3 Transversal Mode 105
5.2.4 Polymorphic Mode 107
5.2.4.1 Polymorphic Mode without Shape Optimization 108
5.2.4.2 Polymorphic Mode with Shape Optimization 109
5.2.5 Discussion and Conclusions 110
5.3 Kinetics of Lateral Growth of Intermediate Phase Islands at the Initial
StageofReactiveDiffusion 112
5.3.1 Problem Formulation 112
5.3.2 Physical Model 114
5.3.3 Numerical Results 116
5.3.4 Analytical Solution for the Steady State 117
5.3.5 Asymptotic Thickness of an Island 118
5.3.6 Estimates 119
5.3.7 Conclusions 121
5.4 MC-Scheme of Reactive Diffusion 121
5.4.1 Formulation of the Problem 121
5.4.2 The Model 122
5.4.3 Nucleation of Phase A2B1at the Interface A¨CA1B2 124
5.4.4 Competitive Nucleation of Phases A1B2and A2B1at the Interface
A¨CB 129
5.4.5 Lateral Competition 131
5.4.6 Conclusions 131
References 132
Further Reading 133
6 Flux-Driven Morphology Evolution 135
Andriy M. Gusak
6.1 Introduction 135
6.2 Grain Growth and Ripening: Fundamentals 136
6.2.1 Main Approximations of the LSW Approach 136
6.2.2 Traditional Approaches to the Description of Grain Growth 138
6.3 Alternative Derivation of the Asymptotic Solution of the LSW
Theory 139
6.4 Flux-Driven Ripening at Reactive Diffusion 142
6.4.1 Experimental Results 143
6.4.2 Basic Approximations 144
6.4.3 Basic Equations 145
6.5 Flux-Driven Grain Growth in Thin Films during Deposition 148
6.5.1 ¡®¡®Mushroom Effect¡¯¡¯ on the Surface of a Pair of Grains: Deterministic
Approach 150
6.5.2 Analysis of Flux-Driven Grain Growth 151
6.5.3 Stochastic Approach 154
6.5.4 Monte Carlo Simulation of Flux-Driven Grain Growth 155
6.5.5 Lateral Grain Growth in Aluminum Nanofilm during Deposition 156
6.5.5.1 Hillert¡¯s Model 160
6.5.5.2 Models Leading to a Rayleigh Distribution 161
6.5.5.3 Pair Interaction Model (Di Nunzio) 161
6.6 Flux-Induced Instability and Bifurcations of Kirkendall Planes 163
6.6.1 Kirkendall Effect and Velocity Curve 164
6.6.2 Stable and Unstable K-Planes 165
6.6.3 Experimental Results 166
6.6.4 General Instability Criterion 168
6.6.5 Estimation of Markers¡¯ Distributions Near the Virtual K-Plane 169
6.6.6 Spatial Distribution of Markers 170
6.6.7 Possible Alternative to the Multilayer Method 171
6.7 Electromigration-Induced Grain Rotation in Anisotropic Conducting
Beta Tin 173
6.8 Thermomigration in Eutectic Two-Phase Structures 178
6.8.1 Thermomigration Induced Back Stress in Two-Phase Mixtures 183
6.8.2 Thermomigration-Driven Kirkendall Effect in Binary Mixtures 184
6.8.3 Stochastic Tendencies in Thermomigration 185
References 186
7 Nanovoid Evolution 189
Tatyana V. Zaporozhets and Andriy M. Gusak
7.1 Introduction 189
7.2 Kinetic Analysis of the Instability of Hollow Nanoparticles 191
7.2.1 Introduction 191
7.2.2 Mechanism of Nanoshell Shrinkage 192
7.2.3 Models of Nanovoid Shrinkage 194
7.2.3.1 Model 1: Shrinkage of Pure Element Nanoshells 195
7.2.3.2 Model 2: Shrinkage of a Binary Compound Nanoshell with Steady
State Approximation for Both Vacancies and B Species 197
7.2.3.3 Model 3: Steady State and Non¨CSteady State Vacancies for
Component B 200
7.2.3.4 Model 4: Non¨CSteady State Vacancies and Atoms 204
7.2.4 Segregation of Pure B at the Internal Surface 205
7.2.5 Kinetic Monte Carlo Simulation of Shrinkage of a Nanoshell 206
7.2.5.1 Model 1MC: Pure B-Shell in Vacuum 207
7.2.5.2 Model 2MC: Ordered IMC Nanoshell in Vacuum 208
7.2.6 Influence of Vacancy Segregation on Nanoshell Shrinkage 208
7.2.7 Summary 215
7.3 Formation of Compound Hollow Nanoshells 216
7.3.1 Introduction 216
7.3.2 Model of Nanoshell Formation 216
7.3.3 Simplified Analysis of the Competition Between ¡®¡®Kirkendall-Driven¡¯¡¯
and ¡®¡®Curvature-Driven¡¯¡¯ Effects 218
7.3.4 Rigorous Kinetic Analysis 220
7.3.5 Results and Discussion 225
7.3.6 Summary 228
7.4 Hollow Nanoshell Formation and Collapse in One Run: Model for a
Solid Solution 229
7.4.1 Introduction 229
7.4.2 Shrinkage 229
7.4.3 Formation of a Hollow Nanoshell from Core¨CShell Structure without
the Influence of Ambient Atmosphere 233
7.4.4 Results of the Phenomenological Model 234
7.4.5 Monte Carlo Simulation of the Vacancy Subsystem Evolution in the
Structure ¡®¡®Core¨CShell¡¯¡¯ 238
7.4.5.1 Formation of a NanoShell in a MC simulation 239
7.4.5.2 Crossover from Formation to Collapse 239
7.4.5.3 Shrinkage and Segregation Kinetics in an MC Simulation 241
7.4.6 Summary 241
7.5 Void Migration in Metallic Interconnects 245
7.5.1 Hypotheses and Experiments 245
7.5.2 The Model 248
7.5.3 Results 249
7.5.3.1 Migration of Voids in Bulk Cu and Determination of the Calibration
Factor between MCS and Real Time 249
7.5.3.2 Void Migration Along the Metal/Dielectric Interface 250
7.5.4 Simplified Analytical Models of Trapping at the GBs and at the GB
Junctions 253
7.5.5 Summary 255
References 256
8 Phase Formation via Electromigration 259
Semen V. Kornienko and Andriy M. Gusak
8.1 Introduction 259
8.2 Theory of Phase Formation and Growth in the Diffusion Zone at
interdiffusion in an External Electric Field 260
8.2.1 External Field Effects on Intermetallic Compounds Growth at
Interdiffusion 260
8.2.2 Criteria for Phase Suppression and Growth in an External Field 267
8.2.3 Effect of an External Field on the Incubation Time of a Suppressed
Phase 270
8.2.4 Conclusions 271
8.3 Effects of Electromigration on Compound Growth at the
Interfaces 272
8.4 Reactive Diffusion in a Binary System at an Imposed Electric Current
at Nonequilibrium Vacancies 275
8.4.1 Equation for the Growth of an Intermediate Phase taking into Account
Nonequilibrium Vacancies 275
8.4.2 Analysis of the Equation for the Rate of Intermediate Phase Growth in
Limiting Cases 279
8.4.3 Numerical Solution of the Equation for the Intermediate Phase Rate of
Growth 281
8.4.4 Conclusion 286
References 286
9 Diffusion Phase Competition in Ternary Systems 289
Semen V. Kornienko, Yuriy A. Lyashenko, and Andriy M. Gusak
9.1 Introduction 289
9.2 Phase Competition in the Diffusion Zone of a Ternary System 289
9.2.1 Phase Competition in the Diffusion Zone of a Ternary System with
Two Intermediate Phases 290
9.2.2 Influence of Pt on Phase Competition in the Diffusion Zone of the
Ternary (NiPt)¨CSi System 295
9.2.2.1 Basic Considerations 295
9.2.2.2 Effect of Pt on Phase Competition in the Diffusion Zone
of Ni¨CSi 297
9.2.2.3 Calculations and Discussion 300
9.3 Ambiguity and the Problem of Selection of the Diffusion Path 302
9.3.1 General Remarks 302
9.3.2 Analytical Solution of the Simplified Symmetric Model 304
9.3.3 Numerical Calculations for a Complex Model 309
9.3.4 Conclusions 320
9.4 Nucleation in the Diffusion Zone of a Ternary System 321
9.4.1 Model Description 321
9.4.2 Algorithm and Results for the Model System 325
9.4.3 Discussion 327
References 329
Further Reading 331
10 Interdiffusion with Formation and Growth of Two-Phase Zones 333
Yuriy A. Lyashenko and Andriy M. Gusak
10.1 Introduction 333
10.2 Peculiarities of the Diffusion Process in Ternary Systems 334
10.2.1 Notations 334
10.2.2 Thermodynamic Peculiarities 335
10.2.3 Diffusion Peculiarities 336
10.2.4 Types of Diffusion Zone Morphology in Three-Component
Systems 337
10.3 Models of Diffusive Two-Phase Interaction 340
10.3.1 Model Systems 341
10.3.2 Phenomenological Approach to the Description of Interdiffusion in
Two-Phase Zones 345
10.3.3 Choice of the Diffusion Interaction Mode 348
10.4 Results of Modeling and Discussion 350
10.4.1 One-Dimensional Model of Interdiffusion between Two-Phase
Alloys 350
10.4.2 The Problem of Indefiniteness of the Final State 352
10.4.3 Diffusion Path Stochastization in the Two-Phase Region 353
10.4.4 Invariant Interdiffusion Coefficients in the Two-Phase Zone 354
10.4.5 Conclusions 356
References 356
Further Reading 358
11 The Problem of Choice of Reaction Path and Extremum Principles 359
Andriy M. Gusak and Yuriy A. Lyashenko
11.1 Introduction 359
11.2 Principle of Maximal Entropy Production at Choosing the Evolution
Path of Diffusion-Interactive Systems 359
11.3 Nonequilibrium Thermodynamics: General Relations 361
11.3.1 Isolated Systems 361
11.3.2 System in a Thermostat 363
11.3.3 Inhomogeneous Systems: Postulate of Quasi-Equilibrium for
Physically Small Volumes 364
11.3.4 Extremum Principles 366
11.4 Application of the Principles of Thermodynamics of Irreversible
Processes: Examples 368
11.4.1 Criterion of First Phase Choice at Reaction¨CDiffusion Processes 368
11.5 Conclusions 378
References 379
12 Choice of Optimal Regimes in Cellular Decomposition,
Diffusion-Induced Grain Boundary Migration, and the Inverse
Diffusion Problem 381
Yuriy A. Lyashenko
12.1 Introduction 381
12.2 Model of Self-Consistent Calculation of Discontinuous Precipitation
Parameters in the Pb¨CSn System 382
12.2.1 General Description of the Model Systems 384
12.2.2 Model Based on the Balance and Maximum Production of
Entropy 387
12.2.2.1 Phase Transformations and Law of Conservation of Matter 388
12.2.2.2 Calculation of the Driving Force 389
12.2.2.3 Calculation of Energy Dissipation in the Transformation Front along
the Precipitation Lamella 389
12.2.2.4 Calculation of Energy Dissipation Close to the Transformation
Front 393
12.2.3 Calculation of Entropy Production Taking into Account Grain
Boundary Diffusion and Atomic Jumps through the Grain
Boundary 400
12.2.3.1 Optimization Procedure and Calculation Results 401
12.3 Model of Diffusion-Induced Grain Boundary Migration (DIGM) Based
on the Extremal Principle of Entropy Production by the Example of
Cu¨CNi Thin Films 405
12.3.1 Model Description 406
12.3.1.1 Mass Conservation and Thermodynamic Description 408
12.3.1.2 Calculation of the Entropy Production Rate due to Grain Boundary
Diffusion 409
12.3.1.3 Calculation of the Driving Force 410
12.3.2 Results of Model Calculations for the Cu¨CNi System 411
12.3.2.1 Determination of the Curvature of the Gibbs Potential 411
12.3.2.2 Diffusion Parameters of the System 412
12.3.2.3 Grain Boundary Mobility 412
12.3.2.4 Results of the Model Calculation for the Cu/Ni/Cu-Like System 412
12.4 Entropy Production as a Regularization Factor in Solving the Inverse
Diffusion Problem 416
12.4.1 Description of the Procedure of the Inverse Diffusion Problem
Solution for a Binary System 416
12.4.2 Results of Model Calculations 418
12.5 Conclusions 421
References 422
Further Reading 424
13 Nucleation and Phase Separation in Nanovolumes 425
Aram S. Shirinyan and Andriy M. Gusak
13.1 Introduction 425
13.2 Physics of Small Particles and Dispersed Systems 427
13.2.1 Nano-Thermodynamics 427
13.2.2 Production of Dispersed Systems 428
13.2.3 Anomalous Structures and Phases in DSs and Thermodynamic
Estimates 428
13.2.4 Influence of DSs on the Temperature of the Phase
Transformation 430
13.2.5 State Diagrams of DSs 431
13.2.6 Shift of the Solubility Limits in DSs 431
13.2.6.1 Depletion 432
13.2.7 Concluding Remarks 432
13.3 Phase Transformations in Nanosystems 433
13.3.1 Solid¨CSolid First-Order Phase Transitions 433
13.3.1.1 Geometry of a Nanoparticle and Nucleation Modes 433
13.3.1.2 Depletion Effect 435
13.3.1.3 Regular Solution 435
13.3.1.4 Change of Gibbs Free Energy 436
13.3.1.5 Minimization Procedure 437
13.3.1.6 Probability Factor of the Phase Transformation 439
13.3.2 Phase Diagram Separation 439
13.3.2.1 Variation of TemperatureT 439
13.3.2.2 Transition Criterion, Separation Criterion 440
13.3.2.3 VaryingR 441
13.3.2.4 VaryingC0 441
13.3.2.5 Phase Diagram 441
13.3.2.6 Size-Dependent Diagram and Solubilities in Multicomponent
Nanomaterials 442
13.3.2.7 Critical Supersaturation 443
13.3.2.8 Concluding Remarks 444
13.4 Diagram Method of Phase Transition Analysis in Nanosystems 444
13.4.1 Gibbs¡¯s Method of Geometrical Thermodynamics 445
13.4.2 Nucleation of an Intermediate Phase 446
13.4.2.1 Phase Transition Criterion 446
13.4.2.2 Model of Intermediate Phase 446
13.4.2.3 Separation in a Macroscopic Sample: Equilibrium State Diagram 447
13.4.2.4 Separation in DSs: Size-Dependent Phase Diagram 448
13.4.2.5 Influence of Size on Limiting Solubility 449
13.4.2.6 Influence of Size of an Isolated Particle on the Phase Transition
Temperature 449
13.4.2.7 Concluding Remarks 450
13.5 Competitive Nucleation and Growth of Two Intermediate Phases:
Binary Systems 451
Case 1 454
Case 2 454
Case 3 or Crossover Regime 455
13.5.1 Application to the Aluminum¨CLithium system 456
13.5.2 Concluding Remarks 458
13.6 Phase Diagram Versus Diagram of Solubility: What is the Difference
for Nanosystems? 458
13.6.1 Some General Definitions 461
13.6.1.1 What are the ¡®¡®solidus¡¯¡¯ and ¡®¡®liquidus¡¯¡¯? 461
13.6.1.2 What is the ¡®¡®Limit of Solubility¡¯¡¯? 461
13.6.2 Nanosized Solubility Diagram 462
13.6.2.1 Solubility Limit 462
13.6.2.2 Liquidus 462
13.6.2.3 Solidus 462
13.6.2.4 Nanosized Solubility Diagram 462
13.6.3 Nanosized Phase Diagram 463
13.6.3.1 Three Types of Diagrams 463
13.6.3.2 T¨CCDiagram at FixedR 464
13.6.3.3 VaryingR 465
13.6.3.4 Concluding Remarks 465
13.7 Some Further Developments 465
13.7.1 Solubility Diagram of the Cu¨CNi Nanosystem 465
13.7.2 Size-Induced Hysteresis in the Process of Temperature Cycling of a
Nanopowder 466
13.7.2.1 Concluding Remarks 468
13.A Appendix: The Rule of Parallel Tangent Construction for Optimal
Points of Phase Transitions 469
13.A.1 Resume 470
References 471
Index 475
»Ø¸´´ËÂ¥

» ±¾Ìû¸½¼þ×ÊÔ´Áбí

  • »¶Ó­¼à¶½ºÍ·´À¡£ºÐ¡Ä¾³æ½öÌṩ½»Á÷ƽ̨£¬²»¶Ô¸ÃÄÚÈݸºÔð¡£
    ±¾ÄÚÈÝÓÉÓû§×ÔÖ÷·¢²¼£¬Èç¹ûÆäÄÚÈÝÉæ¼°µ½ÖªÊ¶²úȨÎÊÌ⣬ÆäÔðÈÎÔÚÓÚÓû§±¾ÈË£¬Èç¶Ô°æȨÓÐÒìÒ飬ÇëÁªÏµÓÊÏ䣺libolin3@tal.com
  • ¸½¼þ 1 : Diffusion_controlled_Solid_State_Reactions.pdf
  • 2013-11-11 09:56:43, 6.8 M

» ²ÂÄãϲ»¶

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

lzq0902

½ð³æ (³õÈëÎÄ̳)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍƼö

×ÊÔ´Äѵ㬶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
133Â¥2014-10-27 14:26:13
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
²é¿´È«²¿ 239 ¸ö»Ø´ð
¼òµ¥»Ø¸´
¹éÒþ2Â¥
2013-11-11 10:32   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
w_wwb3Â¥
2013-11-11 11:03   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
zcm3084Â¥
2013-11-11 11:58   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
wmnick5Â¥
2013-11-11 13:17   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
jtkdpangzi6Â¥
2013-11-11 13:34   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
gzmeng7Â¥
2013-11-11 14:00   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
zjys58878Â¥
2013-11-11 20:17   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
2013-11-11 22:16   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
muxinjin10Â¥
2013-11-11 23:33   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
dazheng0111Â¥
2013-11-12 00:31   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
njgreencard12Â¥
2013-11-12 02:34   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
muohio89613Â¥
2013-11-12 02:36   »Ø¸´  
ÎåÐǺÃÆÀ  ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
¡î ÎÞÐǼ¶ ¡ï Ò»ÐǼ¶ ¡ï¡ï¡ï ÈýÐǼ¶ ¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶
×î¾ßÈËÆøÈÈÌûÍƼö [²é¿´È«²¿] ×÷Õß »Ø/¿´ ×îºó·¢±í
[˶²©¼ÒÔ°] ˶²©¾ÞÓ¤£¬Ò²Ðí²Å¸Õ¸Õ¿ªÊ¼ +30 SNaiL1995 2024-06-12 77/3850 2024-06-16 23:18 by »¶Ï²1998
[˶²©¼ÒÔ°] ²©Ê¿±ÏÒµ¸ßУºÍ¾ÍÒµµÄÏà¹ØÎÊÌâ +5 SCITOPPP 2024-06-14 8/400 2024-06-16 21:33 by kingkongking
[½Ìʦ֮¼Ò] ÈÄÒ飺ʲôÖƶÈÄܱ£ÕÏ´óѧÆÕͨ½Ìʦ²»ÓÃΪÁìµ¼Áà°ü£¬²»Óÿ´Áìµ¼Á³É« +9 zju2000 2024-06-12 15/750 2024-06-16 20:45 by ±±äéÓã1318
[»ù½ðÉêÇë] Nature 11ÈÕ·¢ÎÄ£¬ÖйúÖøÃûѧÕßÃdzÆÔì¼ÙÆȲ»µÃÒÑ +6 babu2015 2024-06-14 6/300 2024-06-16 18:37 by ϲ»¶ºÍÒ»Ñõ»¯¶þÌ
[½Ìʦ֮¼Ò] ÿ´ÎɧÈÅŮѧÉúµÄ¶¼ÊÇԺϵÁìµ¼£¬¶ø²»ÊÇÆÕͨ½Ìʦ£¬Ð¡±àÃÇҪעÒâ´ë´ÇÕýÈ· +9 zju2000 2024-06-15 11/550 2024-06-16 14:49 by appleapple2
[»ù½ðÉêÇë] ²©ºó»ù½ð£¬²©¹Ü»á»áÌáÇ°ÖªµÀÏûÏ¢Â𣿠+4 yuyiang 2024-06-13 4/200 2024-06-16 11:40 by yangyuzhong4
[ÂÛÎÄͶ¸å] ¶þÉó·µÐÞËÍÉó10ÌìÁË£¬Ô­À´Ò»ÉóµÄ3¸öÉó¸åÈËÖ»ÓÐ2¸ö½ÓÊÜÁËÉó¸å£¬»áÑûÇëÐÂÉó¸åÈËô£¿ 50+3 huanpo116 2024-06-15 5/250 2024-06-16 10:27 by bobvan
[ÕÒ¹¤×÷] ³É¶¼²úÆ·ÖÊÁ¿¼ì²âÑо¿Ôº 200+3 ¾¨Óã663 2024-06-11 9/450 2024-06-16 10:08 by SNaiL1995
[ÎÄѧ·¼²ÝÔ°] ÀÛ²¢¿ìÀÖ×Å +13 MYHLD521 2024-06-14 13/650 2024-06-15 22:59 by zeolitess
[ÂÛÎÄͶ¸å] Éó¸åÈ˺¬ºý¾Ü¸å£¬»¹ÐèÒª»Ø¸´Âð£¿ÈçºÎ»Ø¸´£¿ 20+3 BruceChum 2024-06-15 17/850 2024-06-15 20:19 by arthas_007
[»ù½ðÉêÇë] BO4µÄYQ´ð±ç֪ͨ·¢²¼ÁËÂ𣿠+6 ²©Ñ§óÆÐÐ 2024-06-11 6/300 2024-06-15 16:04 by ±¯´ß¿ÆÑй·
[ÂÛÎÄͶ¸å] Ͷ¸åʱÍü¼ÇÐÞ¸ÄÒ»×÷ +7 gll123456 2024-06-13 11/550 2024-06-15 11:49 by gll123456
[»ù½ðÉêÇë] ÓÐûÓлúеµÄÇ°±²·ÖÏíÒ»ÏÂÆÀÉϺ£ÓŶ¼ÊÇʲô³É¹û°¡ +7 wulala800 2024-06-10 7/350 2024-06-15 09:33 by ÏþÄ¿³ç
[ÂÛÎÄͶ¸å] Éó¸åÎÊÌ⣺Ϊʲôӫ¹â¼¤·¢²¨³¤ºÍ×ÏÍâÎüÊÕ²¨³¤²îµÄ´ó£¿ 10+4 sdawege 2024-06-14 8/400 2024-06-14 22:39 by ¶«±±¶ÁÊéÈË
[»ù½ðÉêÇë] ÃæÉÏ»ù½ðÓÐÒ»¸ö£¨Á½¸ö£©CÊDz»ÊǾÍûϷÁË.... 5+3 zzzm116 2024-06-13 17/850 2024-06-14 22:26 by lzt8076
[¿¼ÑÐ] ÎïÀí»¯Ñ§Ò»¶ÔÒ»¸¨µ¼ +3 ÁÖ´ódiao 2024-06-12 5/250 2024-06-14 20:57 by ÁÖ´ódiao
[˶²©¼ÒÔ°] »úеÑо¿ÉúÈçºÎÄõ½Äêн40+w +13 °¢°Í°¢°ÍŶŶ 2024-06-11 15/750 2024-06-13 15:40 by 113745685
[˶²©¼ÒÔ°] ¿¼²©Ó¦¸Ã´ÓÄÄÀ↑ʼ׼±¸ +6 ÁÁ½ã2019 2024-06-11 8/400 2024-06-13 12:53 by ÅÁÇïÀòGO
[»ù½ðÉêÇë] ²©ºóÌØÖúÕâÖܳö½á¹ûÂð£¿ÍùÄ궼ÊÇɶʱºò°¡£¿ +13 jsqy 2024-06-12 17/850 2024-06-12 19:55 by Lynn212
[˶²©¼ÒÔ°] É격 +3 ÔÃÔÃССÓã 2024-06-12 3/150 2024-06-12 15:11 by chen5805
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û