| 查看: 982 | 回复: 3 | ||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||
[求助]
matlab中12*12的行列式为零求解其中两个未知量的关系式
|
||||
|
下面的就是要求解得矩阵,直接求一只没得到结果,求大家帮助,十分感谢! Z = [ C^2*(24000000/C^2 - 2100), C^2*(24000000/C^2 - 2100), 24000000*i*(1 - (7*C^2)/40000)^(1/2), (-24000000)*i*(1 - (7*C^2)/40000)^(1/2), 0, 0, 0, 0, 0, 0, 0, 0;... (-24000000)*i*(1 - (274877906944*C^2)/5759346621683811)^(1/2), 24000000*i*(1 - (274877906944*C^2)/5759346621683811)^(1/2), C^2*(24000000/C^2 - 2100), C^2*(24000000/C^2 - 2100), 0, 0, 0, 0, 0, 0, 0, 0;... -i*exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L), -i/exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L), exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L)*(1 - (7*C^2)/40000)^(1/2), -(1 - (7*C^2)/40000)^(1/2)/exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L), i, i, i, i, -(1 - 2147483648/96836132668435*C^2)^(1/2), (1 - (2147483648*C^2)/96836132668435)^(1/2), 0, 0;... exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L)*(1 - (274877906944*C^2)/5759346621683811)^(1/2), -(1 - (274877906944*C^2)/5759346621683811)^(1/2)/exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L), i*exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L), i/exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L), -(1 - 1073741824/417418265923485*C^2)^(1/2), (1 - (1073741824*C^2)/417418265923485)^(1/2), -(1 - 2199023255552/3843611724622139*C^2)^(1/2), (1 - (2199023255552*C^2)/3843611724622139)^(1/2), -i, -i, 0, 0;... C^2*exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L)*(24000000/C^2 - 2100), (C^2*(24000000/C^2 - 2100))/exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L), 24000000*i*exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L)*(1 - (7*C^2)/40000)^(1/2), -(24000000*i*(1 - (7*C^2)/40000)^(1/2))/exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L), (209822248337537792*C^2)/139139421974495 - 136000000, (209822248337537792*C^2)/139139421974495 - 136000000, (5796166480730259456*C^2)/3843611724622139 - 136000000, (5796166480730259456*C^2)/3843611724622139 - 136000000, (-136000000)*i*(1 - (2147483648*C^2)/96836132668435)^(1/2), 136000000*i*(1 - (2147483648*C^2)/96836132668435)^(1/2), 0, 0;... (-24000000)*i*exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L)*(1 - (274877906944*C^2)/5759346621683811)^(1/2), (24000000*i*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/exp((30*pi*(1 - (274877906944*C^2)/5759346621683811)^(1/2))/L), C^2*exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L)*(24000000/C^2 - 2100), (C^2*(24000000/C^2 - 2100))/exp((30*pi*(1 - (7*C^2)/40000)^(1/2))/L), 136000000*i*(1 - (1073741824*C^2)/417418265923485)^(1/2), (-136000000)*i*(1 - (1073741824*C^2)/417418265923485)^(1/2), 136000000*i*(1 - (2199023255552*C^2)/3843611724622139)^(1/2), (-136000000)*i*(1 - (2199023255552*C^2)/3843611724622139)^(1/2), 2 - (2147483648*C^2)/96836132668435, 2 - (2147483648*C^2)/96836132668435, 0, 0;... 0, 0, 0, 0, -(6689978166685594*C^2)/417418265923485, -(6689978166685594*C^2)/417418265923485, (151892695979802361856*C^2)/3843611724622139, (151892695979802361856*C^2)/3843611724622139, 0, 0, 0, 0;... 0, 0, 0, 0, -i*exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L), -i/exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L), -i*exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L), -i/exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L), exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L)*(1 - (2147483648*C^2)/96836132668435)^(1/2), -(1 - (2147483648*C^2)/96836132668435)^(1/2)/exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L), i, (1 - (8589934592*C^2)/5828884187428571)^(1/2);... 0, 0, 0, 0, exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L)*(1 - (1073741824*C^2)/417418265923485)^(1/2), -(1 - (1073741824*C^2)/417418265923485)^(1/2)/exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L), exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L)*(1 - (2199023255552*C^2)/3843611724622139)^(1/2), -(1 - (2199023255552*C^2)/3843611724622139)^(1/2)/exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L), i*exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L), i/exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L), (1 - (1073741824*C^2)/2530962870857143)^(1/2), -i;... 0, 0, 0, 0, -exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L)*((636156723179298944*C^2)/417418265923485 - 136000000), -((636156723179298944*C^2)/417418265923485 - 136000000)/exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L), exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L)*((146096529499072102400*C^2)/3843611724622139 + 136000000), ((146096529499072102400*C^2)/3843611724622139 + 136000000)/exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L), 136000000*i*exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L)*(1 - (2147483648*C^2)/96836132668435)^(1/2), (-136000000)*i*exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L)*(1 - (2147483648*C^2)/96836132668435)^(1/2), -C^2*(3800000000/C^2 - 2800), 2800*C^2*i*(1 - (8589934592*C^2)/5828884187428571)^(1/2);... 0, 0, 0, 0, (-136000000)*i*exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L)*(1 - (1073741824*C^2)/417418265923485)^(1/2), (136000000*i*(1 - (1073741824*C^2)/417418265923485)^(1/2))/exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L), (-136000000)*i*exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L)*(1 - (2199023255552*C^2)/3843611724622139)^(1/2), (136000000*i*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L), -exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L)*((29205777612800000*C^2)/19367226533687 - 136000000), -((29205777612800000*C^2)/19367226533687 - 136000000)/exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L), (-3800000000)*i*(1 - (1073741824*C^2)/2530962870857143)^(1/2), -C^2*(3800000000/C^2 - 2800);... 0, 0, 0, 0, (541468001117409*exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L)*(1 - (1073741824*C^2)/417418265923485)^(1/2))/562949953421312, -(541468001117409*(1 - (1073741824*C^2)/417418265923485)^(1/2))/(562949953421312*exp((30*pi*(1 - (1073741824*C^2)/417418265923485)^(1/2))/L)), (3345717175373327*exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L)*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/35184372088832, -(3345717175373327*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/(35184372088832*exp((30*pi*(1 - (2199023255552*C^2)/3843611724622139)^(1/2))/L)), i*exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L), i/exp((30*pi*(1 - (2147483648*C^2)/96836132668435)^(1/2))/L), 0, 0] |
» 猜你喜欢
26申博(荧光探针方向,有机合成)
已经有4人回复
要不要辞职读博?
已经有3人回复
论文终于录用啦!满足毕业条件了
已经有26人回复
2026年机械制造与材料应用国际会议 (ICMMMA 2026)
已经有4人回复
磺酰氟产物,毕不了业了!
已经有6人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有9人回复
Cas 72-43-5需要30g,定制合成,能接单的留言
已经有8人回复
北京211副教授,35岁,想重新出发,去国外做博后,怎么样?
已经有8人回复
自荐读博
已经有3人回复
不自信的我
已经有5人回复
feixiaolin
荣誉版主 (文坛精英)
-

专家经验: +518 - 应助: 942 (博后)
- 贵宾: 1.275
- 金币: 3430
- 散金: 58785
- 红花: 532
- 沙发: 11
- 帖子: 24215
- 在线: 2601.8小时
- 虫号: 2139575
- 注册: 2012-11-21
- 专业: 光学信息获取与处理
- 管辖: 数学
4楼2013-09-24 17:22:44
feixiaolin
荣誉版主 (文坛精英)
-

专家经验: +518 - 应助: 942 (博后)
- 贵宾: 1.275
- 金币: 3430
- 散金: 58785
- 红花: 532
- 沙发: 11
- 帖子: 24215
- 在线: 2601.8小时
- 虫号: 2139575
- 注册: 2012-11-21
- 专业: 光学信息获取与处理
- 管辖: 数学
|
这个题主要考耐心。 例如,设 a=C^2*(24000000/C^2-2100); b=24000000*i*(1 - (7*C^2)/40000)^(1/2) c=30*pi*(1-(274877906944*C^2)/5759346621683811; d= exp((30*pi*(1-(7*C^2)/40000)^(1/2))/L)*(1-(7*C^2)/40000)^(1/2) …… 则原行列式变为: [a, a, b, -b, 0, 0, 0, 0, 0, 0, 0, 0] [-b, b, a, a, 0, 0, 0, 0, 0, 0, 0, 0] [-i*c, -i/c, d, -1/d, -e, e, i, i, i, i, 0, 0] …… 在此基础上降维, …… eg. 1、2列相减;3、4列相加:第一行只有两个独立元素,按照此两个元素展开; |
2楼2013-09-22 21:46:16
3楼2013-09-23 09:22:53












回复此楼