| 查看: 622 | 回复: 5 | |||
| 【奖励】 本帖被评价2次,作者tan2040504增加金币 1 个 | |||
| 当前主题已经存档。 | |||
[资源]
【转载】美国数学教材清单
|
|||
|
《转》美国数学本科生、研究生基础课程参考书目 在网上找书的时候恰好看到这个,看着觉得的确是经典书目大全,贴在这里供学弟学妹们参考:)其中所谓第几学年云云,各校要求不同,像我所在的学校,一般学生第一年选三到四门基础课(代数、分析、几何三大类中至少各挑一门),学年末进行qualifying笔试。第二年开始选自己喜爱方向的高级课程,并通过qualifying口试。第三年开始做research,并通过第二语言考试(法语或德语或俄语,一般人都选法语,因为代数几何经典大作都是法语的). 而Princeton就没有基础课,只有seminar类型的课…… 美国数学研究生基础课程参考书目 第一学年 秋季学期 春季学期 几何与拓扑 I 几何与拓扑 II 1、James R. Munkres, Topology 较新的拓扑学的教材适用于本科高年级或研究生一年级 2、Basic Topology by Armstrong 本科生拓扑学教材 3、Kelley, General Topology 一般拓扑学的经典教材,不过观点较老 4、Willard, General Topology 一般拓扑学新的经典教材 5、Glen Bredon, Topology and geometry 研究生一年级的拓扑、几何教材 6、Introduction to Topological Manifolds by John M. Lee 研究生一年级的拓扑、几何教材,是一本新书 7、From calculus to cohomology by Madsen 很好的本科生代数拓扑、微分流形教材 代数 I 代数 II 1、 Abstract Algebra Dummit 最好的本科代数学参考书,标准的研究生一年级代数教材 2、 Algebra Lang 标准的研究生一、二年级代数教材,难度很高,适合作参考书 3、 Algebra Hungerford 标准的研究生一年级代数教材,适合作参考书 4、 Algebra M,Artin 标准的本科生代数教材 5、 Advanced Modern Algebra by Rotman 较新的研究生代数教材,很全面 6、 Algebra:a graduate course by Isaacs 较新的研究生代数教材 7、 Basic algebra Vol I&II by Jacobson 经典的代数学全面参考书,适合研究生参考 分析基础 复分析 I 实分析 I 1、 Walter Rudin, Principles of mathematical analysis 本科数学分析的标准参考书 2、 Walter Rudin, Real and complex analysis 标准的研究生一年级分析教材 3、 Lars V. Ahlfors, Complex analysis 本科高年级和研究生一年级经典的复分析教材 4、Functions of One Complex Variable I,J.B.Conway 研究生级别的单变量复分析经典 5、 Lang, Complex analysis 研究生级别的单变量复分析参考书 6、 Complex Analysis by Elias M. Stein 较新的研究生级别的单变量复分析教材 7、Lang, Real and Functional analysis 研究生级别的分析参考书 8、 Royden, Real analysis 标准的研究生一年级实分析教材 9、 Folland, Real analysis 标准的研究生一年级实分析教材 第二学年 秋季学期 春季学期 代数III 代数IV 1、 Commutative ring theory, by H. Matsumura 较新的研究生交换代数标准教材 2、 Commutative Algebra I&II by Oscar Zariski , Pierre Samuel 经典的交换代数参考书 3、 An introduction to Commutative Algebra by Atiyah 标准的交换代数入门教材 4、An introduction to homological algebra ,by weibel 较新的研究生二年级同调代数教材 5、A Course in Homological Algebra by P.J.Hilton,U.Stammbach 经典全面的同调代数参考书 6、 Homological Algebra by Cartan 经典的同调代数参考书 7、 Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin 高级、经典的同调代数参考书 8、 Homology by Saunders Mac Lane 经典的同调代数系统介绍 9、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud 高级的代数几何、交换代数的参考书,最新的交换代数全面参考 代数拓扑 I 代数拓扑 II 1、 Algebraic Topology, A. Hatcher 最新的研究生代数拓扑标准教材 2、 Spaniers "Algebraic Topology" 经典的代数拓扑参考书 3、 Differential forms in algebraic topology, by Raoul Bott and Loring W. Tu 研究生代数拓扑标准教材 4、 Massey, A basic course in Algebraic topology 经典的研究生代数拓扑教材 5、 Fulton , Algebraic topology:a first course 很好本科生高年级和研究生一年级的代数拓扑参考书 6、Glen Bredon, Topology and geometry 标准的研究生代数拓扑教材,有相当篇幅讲述光滑流形 7、 Algebraic Topology Homology and Homotopy 高级、经典的代数拓扑参考书 8、A Concise Course in Algebraic Topology by J.P.May 研究生代数拓扑的入门教材,覆盖范围较广 9、 Elements of Homotopy Theory by G.W. Whitehead 高级、经典的代数拓扑参考书 实分析 II 泛函分析 1、 Royden, Real analysis 标准研究生分析教材 2、 Walter Rudin, Real and complex analysis 标准研究生分析教材 3、 Halmos,"Measure Theory" 经典的研究生实分析教材,适合作参考书 4、 Walter Rudin, Functional analysis 标准的研究生泛函分析教材 5、 Conway,A course of Functional analysis 标准的研究生泛函分析教材 6、 Folland, Real analysis 标准研究生实分析教材 7、 Functional Analysis by Lax 高级的研究生泛函分析教材 8、 Functional Analysis by Yoshida 高级的研究生泛函分析参考书 9、 Measure Theory, Donald L. Cohn 经典的测度论参考书 微分拓扑 李群、李代数 1、 Hirsch, Differential topology 标准的研究生微分拓扑教材,有相当难度 2、 Lang, Differential and Riemannian manifolds 研究生微分流形的参考书,难度较高 3、 Warner,Foundations of Differentiable manifolds and Lie groups 标准的研究生微分流形教材,有相当的篇幅讲述李群 4、 Representation theory: a first course, by W. Fulton and J. Harris 李群及其表示论的标准教材 5、 Lie groups and algebraic groups, by A. L. Onishchik, E. B. Vinberg 李群的参考书 6、 Lectures on Lie Groups W.Y.Hsiang 李群的参考书 7、 Introduction to Smooth Manifolds by John M. Lee 较新的关于光滑流形的标准教材 8、 Lie Groups, Lie Algebras, and Their Representation by V.S. Varadarajan 最重要的李群、李代数参考书 9、 Humphreys, Introduction to Lie Algebras and Representation Theory , Springer-Verlag, GTM-9 标准的李代数入门教材 第三学年 秋季学期 春季学期 微分几何 I 微分几何 II 1、 Peter Petersen, Riemannian Geometry 标准的黎曼几何教材 2、 Riemannian Manifolds: An Introduction to Curvature by John M. Lee 最新的黎曼几何教材 3、 doCarmo, Riemannian Geometry. 标准的黎曼几何教材 4、M. Spivak, A Comprehensive Introduction to Differential Geometry I—V 全面的微分几何经典,适合作参考书 5、Helgason , Differential Geometry,Lie groups,and symmetric spaces 标准的微分几何教材 6、 Lang, Fundamentals of Differential Geometry 最新的微分几何教材,很适合作参考书 7、 kobayashi/nomizu, Foundations of Differential Geometry 经典的微分几何参考书 8、 Boothby,Introduction to Differentiable manifolds and Riemannian Geometry 标准的微分几何入门教材,主要讲述微分流形 9、 Riemannian Geometry I.Chavel 经典的黎曼几何参考书 10、 Dubrovin, Fomenko, Novikov “Modern geometry-methods and applications”Vol 1—3 经典的现代几何学参考书 代数几何 I 代数几何 II 1、 Harris,Algebraic Geometry: a first course 代数几何的入门教材 2、 Algebraic Geometry Robin Hartshorne 经典的代数几何教材,难度很高 3、Basic Algebraic Geometry 1&2 2nd ed. I.R.Shafarevich. 非常好的代数几何入门教材 4、 Principles of Algebraic Geometry by giffiths/harris 全面、经典的代数几何参考书,偏复代数几何 5、 Commutative Algebra with a view toward Algebraic Geometry by Eisenbud 高级的代数几何、交换代数的参考书,最新的交换代数全面参考 6、 The Geometry of Schemes by Eisenbud 很好的研究生代数几何入门教材 7、 The Red Book of Varieties and Schemes by Mumford 标准的研究生代数几何入门教材 8、 Algebraic Geometry I : Complex Projective Varieties by David Mumford 复代数几何的经典 调和分析 偏微分方程 1、 An Introduction to Harmonic Analysis,Third Edition Yitzhak Katznelson 调和分析的标准教材,很经典 2、 Evans, Partial differential equations 偏微分方程的经典教材 3、 Aleksei.A.Dezin,Partial differential equations,Springer-Verlag 偏微分方程的参考书 4、L. Hormander "Linear Partial Differential Operators, " I&II 偏微分方程的经典参考书 5、A Course in Abstract Harmonic Analysis by Folland 高级的研究生调和分析教材 6、 Abstract Harmonic Analysis by Ross Hewitt 抽象调和分析的经典参考书 7、 Harmonic Analysis by Elias M. Stein 标准的研究生调和分析教材 8、 Elliptic Partial Differential Equations of Second Order by David Gilbarg 偏微分方程的经典参考书 9、 Partial Differential Equations ,by Jeffrey Rauch 标准的研究生偏微分方程教材 复分析 II 多复分析导论 1、 Functions of One Complex Variable II,J.B.Conway 单复变的经典教材,第二卷较深入 2、Lectures on Riemann Surfaces O.Forster 黎曼曲面的参考书 3、Compact riemann surfaces Jost 黎曼曲面的参考书 4、Compact riemann surfaces Narasimhan 黎曼曲面的参考书 5、Hormander " An introduction to Complex Analysis in Several Variables" 多复变的标准入门教材 6、 Riemann surfaces , Lang 黎曼曲面的参考书 7、 Riemann Surfaces by Hershel M. Farkas 标准的研究生黎曼曲面教材 8、 Function Theory of Several Complex Variables by Steven G. Krantz 高级的研究生多复变参考书 9、 Complex Analysis: The Geometric Viewpoint by Steven G. Krantz 高级的研究生复分析参考书 专业方向选修课: 1、多复分析 2、复几何 3、几何分析 4、抽象调和分析 5、代数几何 6、代数数论 7、微分几何 8、代数群、李代数与量子群 9、泛函分析与算子代数 10、数学物理 11、概率理论 12、动力系统与遍历理论 13、泛代数 *数学基础: 1、 halmos ,native set theory 2、 fraenkel ,abstract set theory 3、 ebbinghaus ,mathematical logic 4、 enderton ,a mathematical introduction to logic 5、 landau, foundations of analysis 6、 maclane ,categories for working mathematican 应该在核心课程学习的过程中穿插选修 假设本科应有的水平 分析 Walter Rudin, Principles of mathematical analysis Apostol , mathematical analysis M.spivak , calculus on manifolds Munknes ,analysis on manifolds Kolmogorov/fomin , introductory real analysis Arnold ,ordinary differential equations 代数: linear algebra by Stephen H. Friedberg linear algebra by hoffman linear algebra done right by Axler advanced linear algebra by Roman algebra ,artin a first course in abstract algebra by rotman 几何: do carmo, differential geometry of curves and surfaces Differential topology by Pollack Hilbert ,foundations of geometry James R. Munkres, Topology [ Last edited by laizuliang on 2007-10-31 at 14:37 ] |
» 猜你喜欢
三甲基碘化亚砜的氧化反应
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有5人回复
孩子确诊有中度注意力缺陷
已经有12人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
2楼2007-10-30 22:04:14
3楼2007-12-12 11:30:50
4楼2007-12-15 13:37:51














回复此楼