|
|
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ... 想要_回家: 金币+100, ★★★很有帮助, 解决了我的问题 2013-07-15 15:01:52
我用的比较传统的直接解方程的办法,算出不同w对应的n,然后作图,作图的时候,n的虚数部分去掉。
可见看见在w=0和50nm处有跳跃。程序如下:
function sn_20130715
clear all;clc
global w k0 ed em
k0=6.082e6;
ed=1;
em=-42.7616-1.308*1i;
format long
n0=0.1;
w=0;
for i=1:101
n(i)=fsolve(@refraction,n0);
w=w+1e-9;
end
w=0:1e-9:100e-9;
[w' n']
figure
plot(w',n','bo-')
function y=refraction(n)
global w k0 ed em
y=tanh(w*k0/2*sqrt(n^2-ed))+ed*sqrt(n^2-em)/em/sqrt(n^2-ed);
结果:
w n
0 0.099999959741578 + 6.539999121449442i
0.000000001000000 0.096312251752139 + 6.790411526565819i
0.000000002000000 0.096707779627593 + 6.762641111012455i
0.000000003000000 4.642911438878475 + 0.053877233727280i
0.000000004000000 3.962660617247608 + 0.041300656950422i
0.000000005000000 3.525665802152372 + 0.033920995113969i
0.000000006000000 3.216581490280788 + 0.029034029856561i
0.000000007000000 2.983648081683195 + 0.025673453649347i
0.000000008000000 2.800743468367221 + 0.023172073950826i
0.000000009000000 2.652512509968276 + 0.021232609557716i
0.000000010000000 2.529538254154120 + 0.019554357109418i
0.000000011000000 2.425435001788252 + 0.018165144355004i
0.000000012000000 2.335971728020295 + 0.017013917367326i
0.000000013000000 2.258136757699678 + 0.016090235279249i
0.000000014000000 2.189778767247689 + 0.015217258105177i
0.000000015000000 2.129076172185004 + 0.014524751710617i
0.000000016000000 2.074768610545597 + 0.013810265306609i
0.000000017000000 2.025863353416570 + 0.013216186916386i
0.000000018000000 1.981563147230965 + 0.012673784991951i
0.000000019000000 1.941231116322375 + 0.012223991275707i
0.000000020000000 1.904296658761679 + 0.011756537606865i
0.000000021000000 1.870337630393248 + 0.011326860158899i
0.000000022000000 1.839040454804140 + 0.010968370287799i
0.000000023000000 1.810036260319961 + 0.010614583647135i
0.000000024000000 1.783095481222376 + 0.010274176168077i
0.000000025000000 1.757985895939245 + 0.009970519031675i
0.000000026000000 1.734540845621961 + 0.009687402452938i
0.000000027000000 1.712590436229947 + 0.009414924267260i
0.000000028000000 1.691979152449821 + 0.009161543473387i
0.000000029000000 1.672586928136418 + 0.008928065577144i
0.000000030000000 1.654310462030495 + 0.008708270753012i
0.000000031000000 1.637052109604773 + 0.008498210421664i
0.000000032000000 1.620723144513482 + 0.008294787737511i
0.000000033000000 1.605246720201364 + 0.008119958861623i
0.000000034000000 1.590562493942908 + 0.007940897654971i
0.000000035000000 1.576608580383508 + 0.007771734489512i
0.000000036000000 1.563321392247376 + 0.007603024610845i
0.000000037000000 1.550664927079865 + 0.007452783311542i
0.000000038000000 1.538587030987787 + 0.007304501413247i
0.000000039000000 1.527049474518354 + 0.007162602535289i
0.000000040000000 1.516015879011861 + 0.007026659469317i
0.000000041000000 1.505452511439111 + 0.006896429334978i
0.000000042000000 1.495330964568782 + 0.006771118273797i
0.000000043000000 1.485621773843522 + 0.006650840640318i
0.000000044000000 1.476300174141656 + 0.006535136468970i
0.000000045000000 1.467342938878898 + 0.006423791230058i
0.000000046000000 1.458728578591685 + 0.006316519195074i
0.000000047000000 1.450437457270150 + 0.006213046662400i
0.000000048000000 -1.442451248720188 - 0.006113219569101i
0.000000049000000 -1.434753121054391 - 0.006016821837345i
0.000000050000000 -1.427327450859233 - 0.005923659491300i
0.000000051000000 1.420159889060505 + 0.005833567148368i
0.000000052000000 1.413236539813816 + 0.005746449008970i
0.000000053000000 1.406544945920950 + 0.005662198160497i
0.000000054000000 1.400074310486909 + 0.005580338033377i
0.000000055000000 1.393812734392640 + 0.005501110135310i
0.000000056000000 1.387750353509679 + 0.005424274029707i
0.000000057000000 1.381877657123274 + 0.005349721094956i
0.000000058000000 1.376185729345159 + 0.005277343907799i
0.000000059000000 1.370666212982798 + 0.005207045585028i
0.000000060000000 1.365311264186401 + 0.005138734221790i
0.000000061000000 1.360113514385909 + 0.005072323304751i
0.000000062000000 1.355066034121381 + 0.005007731562842i
0.000000063000000 1.350162300396068 + 0.004944882457822i
0.000000064000000 1.345393427200733 + 0.004882984407511i
0.000000065000000 1.340759793596748 + 0.004822846422599i
0.000000066000000 1.336252442133520 + 0.004764573456198i
0.000000067000000 1.331866142921393 + 0.004707984871589i
0.000000068000000 1.327595997140668 + 0.004652934616369i
0.000000069000000 1.323437390856278 + 0.004599308561097i
0.000000070000000 1.319385962926474 + 0.004547017507939i
0.000000071000000 1.315437581749946 + 0.004495990299153i
0.000000072000000 1.311588327382613 + 0.004446168393140i
0.000000073000000 1.307834476842940 + 0.004397501928589i
0.000000074000000 1.304172491433603 + 0.004349947042544i
0.000000075000000 1.300599005448914 + 0.004303464095186i
0.000000076000000 1.297110815812128 + 0.004258016471141i
0.000000077000000 1.293704872543276 + 0.004213569856289i
0.000000078000000 1.290378269869204 + 0.004170091750200i
0.000000079000000 1.287128237928277 + 0.004127551173030i
0.000000080000000 1.283952135002401 + 0.004085918438653i
0.000000081000000 1.280847440273668 + 0.004045165082637i
0.000000082000000 1.277811747013764 + 0.004005263722822i
0.000000083000000 1.274842756233852 + 0.003966188027451i
0.000000084000000 1.271938270727367 + 0.003927912651016i
0.000000085000000 1.269096189499241 + 0.003890413208991i
0.000000086000000 1.266314502546036 + 0.003853666222441i
0.000000087000000 1.263591285969670 + 0.003817649108384i
0.000000088000000 1.260924697396784 + 0.003782340122919i
0.000000089000000 1.258312971686371 + 0.003747718359110i
0.000000090000000 1.255754416904017 + 0.003713763677890i
0.000000091000000 1.253247410544198 + 0.003680456713248i
0.000000092000000 1.250790395984914 + 0.003647778821886i
0.000000093000000 1.248381879156039 + 0.003615712060742i
0.000000094000000 1.246020425409843 + 0.003584239151120i
0.000000095000000 1.243704656575665 + 0.003553343463064i
0.000000096000000 1.241433248191287 + 0.003523008975785i
0.000000097000000 1.239204926894032 + 0.003493220259718i
0.000000098000000 1.237018467964833 + 0.003463962443380i
0.000000099000000 1.234872693011164 + 0.003435221199726i
0.000000100000000 1.232766467784416 + 0.003406982711529i
![金属狭缝内的有效折射率的方程求解]()
附图1.jpg
|
|