| 查看: 485 | 回复: 2 | ||
lliuzhi金虫 (正式写手)
|
[求助]
H103和NKA-II树脂合成方法
|
| 请问H103和NKA-II树脂苯乙烯以何种方式聚合得到,包括引发剂、交联剂、分散剂 |
» 猜你喜欢
博士延得我,科研能力直往上蹿
已经有6人回复
退学或坚持读
已经有27人回复
面上基金申报没有其他的参与者成吗
已经有5人回复
有70后还继续奋斗在职场上的吗?
已经有5人回复
遇见不省心的家人很难过
已经有22人回复
多组分精馏求助
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
【求助】 酚醛树脂合成方法
已经有9人回复
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
lliuzhi: 金币+30, ★★★很有帮助, 感谢应贴 2013-03-08 09:33:25
感谢参与,应助指数 +1
lliuzhi: 金币+30, ★★★很有帮助, 感谢应贴 2013-03-08 09:33:25
|
Stein, Andreas, “Soft Chemical Synthesis of Porous Materials Based on Cluster-Network Structures,” NSF Award Abstract, Abstract No. 9701507 (abstract) &lsqb online&rsqb . National Science Foundation, Arlington, VA, project dates May 1, 1997-May 31, 2002 (estimated) &lsqb retrieved on Jun. 22, 2001&rsqb . Retrieved from the Internet: URL: http.www fastlane.nsf.gov/servlet/showaward&quest award&equals 9701507, 2 pages. Stein, Andreas “Soft Chemical Synthesis of Porous Materials Based on Cluster-Network Structures,” NSF Grant No. 9701507 (abstract) &lsqb online&rsqb . National Science Foundation, Arlington, VA, May 1, 1997 to Apr. 30, 1999 FY:2001 &lsqb retrieved on Jun. 22, 2001&rsqb . Retrieved from: Dialog Information Services, FEDRIP Database, 1 page. Ward, Michael D., “Materials Research Science and Engineering Center for Hybrid Materials,” NSF Award Abstract, Abstract No. 9809364 (abstract) &lsqb online&rsqb . National Science Foundation, Arlington, VA, project dates Sep. 1, 1998-Feb. 23, 2003 (estimated) &lsqb retrieved on Jun. 22, 2001&rsqb . Retrieved from the Internet: URL: http.www fastlane.nsf.gov/servlet/showaward&quest award&equals 9809364, 2 pages. Abrams et al., “Probing Intrazeolite Space,” J. Incl. Phenom. Mol. Recog. Chem, 21(1):1-46 (1995). ;(1):1-46 (1995). Antonietti et al., “Synthesis of Mesoporous Silica with Large Pores and Bimodal Pore Size Distribution by Templating of Polymer Latices,” Adv. Mater., 10(2):154-159 (1998). ;(2):154-159 (1998). Attard et al., “Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases,” Science, 278:838-840 (1997). ;:838-840 (1997). Beck et al., “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,” J. Am. Chem. Soc., 114(27):10834-10843 (1992). ;(27):10834-10843 (1992). Bein, “Synthesis and Applications of Molecular Sieve Layers and Membranes,” Chem. Mater., 8(8):1636-1653 (1996). ;(8):1636-1653 (1996). Blanford et al., “Synthesis of Highly Ordered Macroporous Minerals: Extension of the Synthetic Method to Other Metal Oxides and Organic-Inorganic Composites,” MRS Symposium Nov. 30-Dec. 3, 1998, Boston; published in: Mater. Res. Soc. Symp. Proc., 549:61-66 (1999). ;:61-66 (1999). Burkett et al., “Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors,” Chem Commun., 11:1367-1368 (1996). ;:1367-1368 (1996). Carlson et al., “Characterization of Optical Diffraction and Crystal Structure in Monodisperse Polystyrene Colloids,” Applied Spectroscopy, 38(3):297-304 (1984). ;(3):297-304 (1984). Corma et al., “Synthesis of MCM-41 with Different Pore Diameters without Addition of Auxiliary Organics,” Chem. Mater., 9(10):2123-2126 (1997). ;(10):2123-2126 (1997). Corma et al., “Delaminated zeolite precursors as selective acidic catalysts,” Nature, 396(6709):353-356 (1998). ;(6709):353-356 (1998). Davis et al., “Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases,” Nature, 385(6615):420-423 (1997). ;(6615):420-423 (1997). Denkov et al., “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir, 8(12):3183-3190 (1992). ;(12):3183-3190 (1992). Efremov, “Chapter 2: Periodic Colloid Structures,” Surface and Colloid Science, vol. 8, Matijevi&cacute , ed., John Wiley & Sons, New York, Title page, publication page, table of contents and pp. 85-192 (1976). Fedie, ;, PhD thesis, University of Minnesota, 162 pages (1996). Flanigen, “Chapter 2: Structural Analysis by Infrared Spectroscopy,” Zeolite Chemistry and Catalysis, ACS Monograph 171, Rabo, ed., American Chemical Society, Washington DC, Title page, publication page, and pp. 80-117 (1976). ;, Rabo, ed., American Chemical Society, Washington DC, Title page, publication page, and pp. 80-117 (1976). Furusawa et al., “Direct Observation for the Structure of the Electrical Double Layer of Concentrated Monodisperse Latices,” J. Colloid Interface Sci., 93(2):504-512 (1983). ;(2):504-512 (1983). Fyfe et al., “Ultra-high resolution 29Si MAS NMR spectra of highly siliceous zeolites,” Nature, 326(6110):281-283 (1987). ;(6110):281-283 (1987). Goodwin et al., “The Preparation and Characterisation of Polymer Latices Formed in the Absence of Surface Active Agents,” Br. Polym. J., 5(5):347-362 (1973). ;(5):347-362 (1973). Goodwin et al., “Control of particle size in the formation of polymer latices,” Br. Polym. J., 10(3):173-180 (1978). ;(3):173-180 (1978). Holland et al., “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids,” Science, 281(5376):538-540 (Jul. 24, 1998). ;(5376):538-540 (Jul. 24, 1998). Holland et al., “Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks,” J. Am. Chem. Soc., 121(17):4308-4309 (May 5, 1999; available on-line Apr. 16, 1999). ;(17):4308-4309 (May 5, 1999; available on-line Apr. 16, 1999). Holland et al., “Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites,” Chem. Mater., 11(3):795-805 (Mar. 15, 1999; available on-line Feb. 19, 1999). ;(3):795-805 (Mar. 15, 1999; available on-line Feb. 19, 1999). Huo et al., “Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays,” Chem. Mater., 6(8):1176-1191 (1994). ;(8):1176-1191 (1994). Huo et al., “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials,” Chem. Mater., 8(5):1147-1160 (1996). ;(5):1147-1160 (1996). Imhof et al., “Ordered macroporous materials by emulsion templating,” Nature, 389(6654):948-951 (1997). ;(6654):948-951 (1997). Imhof et al., “Uniform Macroporous Ceramics and Plastics by Emulsion Templating,”Adv. Mater., 10(9):697-700 (1998). ;(9):697-700 (1998). Jacobs et al., “Properties of the end members in the Pentasil-family of zeolites: characterization as adsorbents,” Zeolites, 1(3):161-168 (1981). ;(3):161-168 (1981). Joannopoulos et al., “Photonic crystals: putting a new twist on light,” Nature, 386(6621):143-149 (1997). ;(6621):143-149 (1997). Johnson et al., “Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates,” Science, 283(5404):963-965 (Feb. 12, 1999). ;(5404):963-965 (Feb. 12, 1999). Judith et al., “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science, 281:802-804 (1998). ;:802-804 (1998). Khushalani et al., “Metamorphic Materials: Restructuring Siliceous Mesoporous Materials,” Adv. Mater., 7(10):842-846 (1995). ;(10):842-846 (1995). Kloetstra et al., “Mesoporous material containing framework tectosilicate by pore-wall recrystallization,” Chem. Commun., 23:2281-2282 (1997). ;:2281-2282 (1997). Komarneni et al., “Novel honeycomb structure: a microporous ZSM-5 and macroporous mullite composite,” J. Mater. Chem., 8(11):2327-2329 (1998). ;(11):2327-2329 (1998). Kresge et al., “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, 359(6397):710-712 (1992). ;(6397):710-712 (1992). Larsen et al., “Like-charge attractions in metastable colloidal crystallites,” Nature, 385(6613):230-233 (1997). ;(6613):230-233 (1997). Meier et al., ;Meier et al., Atlas of Zeolite Structure Types; 2nd revised ed., Butterworth's, Boston, Title page, publication page, and table of contents only, 3 pages (1987). ;Meier et al., Atlas of Zeolite Structure Types; 2nd revised ed., Butterworth's, Boston, Title page, publication page, and table of contents only, 3 pages (1987). ;Meier et al., Atlas of Zeolite Structure Types; 2nd revised ed., Butterworth's, Boston, Title page, publication page, and table of contents only, 3 pages (1987). Míguez et al., “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir, 13(23):6009-6011 (1997). ;(23):6009-6011 (1997). Monnier et al., “Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures,” Science, 261:1299-1303 (1993). ;:1299-1303 (1993). Nagase et al., “Thermal Dehydration and Decomposition Reactions of Bivalent Metal Oxalates in the Solid State,” Bull. Chem. Soc. Japan, 48(2):439-442 (1975). ;(2):439-442 (1975). Okubo, “Phase Transition between Liquid-like and Crystal-like Structures of Deionized Colloidal Suspensions,” J. Chem. Soc. Faraday Trans., 86(16):2871-2876 (1990). ;(16):2871-2876 (1990). Ottewill, “Colloid Stability and Instability: “Order Disorder”,” Langmuir, 5(1):4-11 (1989). ;(1):4-11 (1989). Park et al., “Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates,” Chem. Mater., 10(7):1745-1747 (1998). ;(7):1745-1747 (1998). Raman et al., “Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas,” Chem. Mater., 8(8):1682-1701 (1996). ;(8):1682-1701 (1996). Rausch et al., “Morphology and Utilization of Smooth Hydrogen-Evolving Raney Nickel Cathode Coatings and Porous Sintered-Nickel Cathodes,” J. Electrochem. Soc., 143(9):2852-2862 (1996). ;(9):2852-2862 (1996). Roberts et al., “The antimony-antimony trioxide electrode and its use as a measure of acidity,” J. Am. Chem. Soc., 50:2125-2147 (1928). ;:2125-2147 (1928). Roy et al., “Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange,” Nature, 247(5437):220-222 (1974). ;(5437):220-222 (1974). Shimizu et al., “Direct Crystallization of Amorphous Silicates to Zeolites in Solid State,” Chem. Letters, 5:403-404 (1996). ;:403-404 (1996). Smith, “Arsenic, Antimony and Bismuth,” Comprehensive Inorganic Chemistry, vol. 2, Bailar et al., eds., Pergamon Press: Oxford, Title page, publication page, table of contents, and pp. 547-683 (1973). ;, vol. 2, Bailar et al., eds., Pergamon Press: Oxford, Title page, publication page, table of contents, and pp. 547-683 (1973). Sun et al., “Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism,” Nature, 389(6652):704-706 (1997). ;(6652):704-706 (1997). Szostak, ;, Van Nostrand Reinhold, New York, Title page, publication page, and table of contents only, 5 pages (1989). Tanev et al., “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature, 368(6469):321-323 (1994). ;(6469):321-323 (1994). Tomida et al., “Relation Between the Conditions of Preparation and the Polarization Characteristics of Spongy Raney Nickel Electrodes Used as Anodes for Fuel Cells,” J. Electrochem. Soc., 139(4):981-984 (1992). van Blaaderen et al., “Template-directed colloidal crystallization,” Nature, 385(6614):321-324 (1997). ;(6614):321-324 (1997). Velev et al., “Porous silica via colloidal crystallization,” Nature, 389(6650):447-448 (1997). ;(6650):447-448 (1997). Velev et al., “Microstructured Porous Silica Obtained via Colloidal Crystal Templates,” Chem. Mater., 10(11):3597-3602 (1998). ;(11):3597-3602 (1998). Vlasov et al., “Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots,” Adv. Mater., 11(2):165-169 (Feb., 1999). ;(2):165-169 (Feb., 1999). Vos et al., “X-ray Diffraction of Photonic Colloidal Single Crystals,” Langmuir, 13(23):6004-6008 (1997). ;(23):6004-6008 (1997). Wang, ;, Ph.D. Thesis, University of Minnesota, 277 pages (1993). Weber et al., “New Porous Biomaterials by Replication of Echinoderm Skeletal Microstructures,” Nature, 233(5318):337-339 (1971). ;(5318):337-339 (1971). Weber et al., “Replamineform: A New Process for Preparing Porous Ceramic, Metal, and Polymer Prosthetic Materials,” Science, 176(4037):922-924 (1972). ;(4037):922-924 (1972). Woodcock, “Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures,” Nature, 385(6612):141-143 (1997). ;(6612):141-143 (1997). Yan et al., “A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni,” Adv. Mater., 11(12):1003-1006 (Aug., 1999). ;(12):1003-1006 (Aug., 1999). Yan et al., “General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion,” Chem. Mater., 12(4):1134-1141 (Apr. 17, 2000; available on line Mar. 17, 2000). ;(4):1134-1141 (Apr. 17, 2000; available on line Mar. 17, 2000). Yang et al., “Mesoporous Silica with Micrometer-Scale Designs,” Adv. Mater., 9(10):811-814 (1997). ;(10):811-814 (1997). Yang et al., “Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks,” Nature, 396(6707):152-155 (1998). ;(6707):152-155 (1998). Yang et al., “Hierarchically Ordered Oxides,” Science, 282(5397):2244-2246 (1998). ;(5397):2244-2246 (1998). Zakhidov et al., “Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths,” Science, 282:897-901 (1998). ;:897-901 (1998). Zhao et al., “Advances in Mesoporous Molecular Sieve MCM-41,” Ind. Eng. Chem. Res., 35(7):2075-2090 (1996). ;(7):2075-2090 (1996). Zhao et al., “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science, 279:548-552 (1998). ;:548-552 (1998). Zou et al., “Model Filled Polymers. V. Synthesis of Crosslinked Monodisperse Polymethacrylate Beads,” J. Polym. Sci. Part A: Polym. Chem., 30(1):137-144 (1992).;(1):137-144 (1992). |
2楼2013-03-07 13:41:37
【答案】应助回帖
|
(Suspension Copolymerization) A 2 L separable flask equipped with a condenser, a stirrer and a nitrogen inlet tube was set on a constant temperature water bath, polyvinyl alcohol (48 g, manufactured by Wako Pure Chemical Industries, Ltd., average degree of polymerization about 500) and distilled water (1600 g) were placed therein and stirred at 400 rpm. While respectively flowing cooling water and nitrogen gas, the stirring was continued at a constant temperature water bath temperature of 55° C. to dissolve polyvinyl alcohol. Separately, styrene (80 g, manufactured by Wako Pure Chemical Industries, Ltd.), p-acetoxystyrene (7 g, manufactured by Aldrich), divinylbenzene (7.5 g, manufactured by Wako Pure Chemical Industries, Ltd.), 2-ethylhexanol (70 g, manufactured by Wako Pure Chemical Industries, Ltd.), isooctane (30 g, manufactured by Wako Pure Chemical Industries, Ltd.), dibenzoylperoxide (1.8 g, manufactured by NOF Corporation, containing water by 25%) and n-dodecylmercaptan (0.1 g, manufactured by Wako Pure Chemical Industries, Ltd.) were added, mixed and dissolved, and this solution was placed in the above-mentioned separable flask. While stirring under a nitrogen stream at peripheral velocity of 2.0 m/s, the temperature was raised from room temperature to 80° C. to conduct suspension copolymerization for 24 hr. (Washing) The polymerization product was washed by filtration using distilled water and acetone (manufactured by Wako Pure Chemical Industries, Ltd.) to allow dispersion in acetone to the total amount of about 2 L. This was further dispersed using an ultrasonic homogenizer and further washed by filtration using distilled water and acetone to allow dispersion in acetone to the total amount of about 1 L. (Classification) This dispersion was stood still until beads-like copolymer precipitated and the precipitate was not disturbed even when the dispersion was tilted, and the supernatant (acetone) was disposed. Acetone was again added to the precipitate to the total amount of about 1 L, the mixture was stood still, and acetone was disposed, which operation was repeated 12 times to allow for classification. The dispersion was filtered and vacuum dried to give a styrene-acetoxystyrene-divinylbenzene copolymer as a powder. (Hydrolysis) The above-mentioned styrene-acetoxystyrene-divinylbenzene copolymer (70 g) and tetrahydrofuran (467 g, manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a 1 L separable flask and the mixture was stirred at 200 rpm. While respectively flowing cooling water and nitrogen gas, the stirring was continued at a constant temperature water bath temperature of 50° C. to allow dispersion. Thereto was added hydrazine monohydrate (105 g, manufactured by Wako Pure Chemical Industries, Ltd.) and the copolymer was hydrolyzed for 15 hr. The reaction mixture was neutralized with hydrochloric acid and the polymerization product was washed by filtration using distilled water and acetone. The product was dispersed in acetone to the total amount of about 1 L, and the dispersion was filtered and vacuum dried to give a porous resin bead comprising a powdery styrene-hydroxystyrene-divinylbenzene copolymer. |
3楼2013-03-07 13:58:20













回复此楼