| ²é¿´: 769 | »Ø¸´: 1 | ||||||||
| ±¾Ìû²úÉú 1 ¸ö »ù½ðHEPI £¬µã»÷ÕâÀï½øÐв鿴 | ||||||||
yjsweetsmileÌú³æ (ÕýʽдÊÖ)
|
[ÇóÖú]
ÇóÕªÒª£º¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð50625103
|
|||||||
|
» ²ÂÄãϲ»¶
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ10È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
bird168
Ìú¸Ëľ³æ (ÖøÃûдÊÖ)
- »ù½ðHEPI: 5
- Ó¦Öú: 12 (СѧÉú)
- ¹ó±ö: 0.01
- ½ð±Ò: 9857.2
- É¢½ð: 110
- ºì»¨: 10
- Ìû×Ó: 2208
- ÔÚÏß: 961.5Сʱ
- ³æºÅ: 636208
- ×¢²á: 2008-10-25
- ÐÔ±ð: GG
- רҵ: Äý¾Û̬ÎïÐÔ II £ºµç×ӽṹ
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
wg423(ÐüÉͽð±Ò+20, »ù½ðHEPI+1): ÐÖú½áÌù£¬Ð»Ð»Ó¦Öú 2013-03-31 20:29:21
wg423(ÐüÉͽð±Ò+20, »ù½ðHEPI+1): ÐÖú½áÌù£¬Ð»Ð»Ó¦Öú 2013-03-31 20:29:21
|
ÖÐÎÄÕªÒª£º 1) ѡȡ²¢Éè¼ÆÁ˵äÐ͵ÄFCC½ðÊô»òºÏ½ð£¬ÈçAl¡¢Ag¡¢Au¡¢Cu¡¢Ni¡¢Cu-Al¡¢Cu-ZnºÏ½ðµÈµ¥¾§Ì壬´ÓÔªËØÀàÐͺ;§ÌåÈ¡ÏòÁ½·½Ãæ½ÒʾÁËFCC½ðÊôÑ»·ÐαäÐÐΪÓë΢¹Ûλ´í×é̬֮¼äµÄ¹ØÏµ£¬Ìá³öÁËFCC½ðÊôÆ£ÀÍ΢¹ÛȱÏÝÑÝ»¯µÄÒ»°ã¹æÂÉ¡£ 2) Ñо¿Á˾ßÓв»Í¬¾§ÌåÈ¡ÏòµÄƽÐС¢´¹Ö±ºÍÇãб¾§½çÍË«¾§ÌåµÄÑ»·Ó¦Á¦ - Ó¦±äÏìÓ¦¡¢Î»´í×é̬¡¢×¤Áô»¬ÒÆ´øÓë¾§½ç¡¢ÂϾ§½çµÄ½»»¥×÷Óá¢Ñؾ§ºÍ´©¾§Æ£ÀÍ¿ªÁÑ»úÀí¡£ 3) ֤ʵÁËͳһÀÉì¶ÏÁÑ×¼ÔòµÄÓÐЧÐÔ£¬Ìá³öÁÙ½ç½âÀíÇ¿¶È¦Ò0ºÍ¼ôÇÐÇ¿¶È¦Ó0ΪͬÖÖ²ÄÁÏÖÐÁ½¸ö¶ÀÁ¢µÄ±¾Õ÷Ç¿¶È£¬Ìá³öÁ˼ôÇÐ-½âÀíÒò×ÓÊÇ¿ØÖƲÄÁÏÇ¿¶È¡¢ËÜÐԺͶÏÁÑ·½Ê½µÄÖØÒª²ÎÊý¡£ 4) Ìá³ö·Ç¾§ºÏ½ðËÜÐÔÁÙ½ç¼ôÇÐ̨½×µÄ¸ÅÄÉè¼ÆÁË100ÄÉÃ׳ߴç·Ç¾§ÑùÆ·µÄÔλÀÉìʵÑ飬¹Û²ìµ½·Ç¾§ºÏ½ðµÄÀÉìËÜÐÔ¡¢Îȶ¨¼ôÇÐÓë¾±ËõÏÖÏó¡£ 5) Ñо¿Á˲»Í¬FCC½ðÊôÓëºÏ½ðµÄÂÏÉúÓë»¬ÒÆµÄ¾ºÕù¹ØÏµ£¬½ÒʾÁ˽ðÊô²ã´íÄÜ¡¢¾§Á£³ß´çºÍ¾§ÌåÈ¡Ïò¶ÔFCC½ðÊôÐαäÂÏÉúµÄÓ°Ïì¡£ 6) ͨ¹ýÉè¼ÆÍÂÁÓëÍпºÏ½ðµÄ²ã´íÄÜ£¬·¢ÏÖ¾¹ýECAP¼°HPT¼·Ñ¹ºóÇ¿¶ÈºÍ¾ùÔÈÑÓÉìÂÊËæºÏ½ðÔö¼Ó¶øÍ¬²½Ôö¼Ó£¬²¢ÇÒÒ²ÄÜÌá¸ßÆäÆ£ÀÍÇ¿¶È¡£ ÖÐÎÄÖ÷Ìâ´Ê£º Æ£ÀÍ£»¶ÏÁÑ£»Ç¿¶È£»ËÜÐÔ Ó¢ÎÄÕªÒª: The fatigue damage mechanisms and dislocation evolution of dislocations in various fcc metals (Al, Cu, Ag, Au, Ni, Cu-Al and Cu-Zn) were investugated. The general rule of dislocation evoluation was proposed based on the results above. The cyclic deformation behaviors of copper bicrystals with parallel, perpendicuar and inclined GBs were investigated, including cyclic stress-strain response, dislocations and interactions of PSB with GBs and TBs to reveal the fatigue cracking mechanisms. The unified tensile fracture criterion was confirmed and the two intrinsic strengths were proposed to control the materials of materials. The concept of the critical shear step in metallic glass was proposed and tensile plasticity of nano-pillar metallic glass as well stable shearing and necking was observed by in-situ tension test. The compition between slipping and twinning in fcc metals were investigated and the efects of stacking fault energy, grain size and orientation were proposed to affect the twnning mechanism in materials with different grain size. The strength and elongation of Cu-Al and Cu-Zn alloys were investigated agter ECAp and HPT processing. It is found that both the strength and elongation of the Cu-Al and Cu-Zn alloys increase with increasing alloying elements. Furthermore, the fatigue strength also increases with adding more alloy elements. Ó¢ÎÄÖ÷Ìâ´Ê£º Fatigue; Fracture; Strength, Plast |
2Â¥2013-02-22 20:58:00













»Ø¸´´ËÂ¥