24小时热门版块排行榜    

查看: 862  |  回复: 3

Aaron_2011

铜虫 (初入文坛)

[求助] 求助查询4篇EI论文检索号,急需!!

求牛人帮忙查询三篇EI论文的检索号:
1.论文名:A Direct Discontinuous Galerkin Method for Nonlinear Schrödinger Equation
作者:ZHANG Rongpei, YU Xijun, ZHAO Guozhong
期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(2): 175-182.
2. 论文名:Discontinuous Finite Element Method for 1D Non-equilibrium Radiation Diffusion Equations
作者:ZHANG Rongpei, YU Xijun, CUI Xia, FENG Tao
期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(5): 641-646.
3.论文名:Implicit-explicit Integration Factor Discontinuous Galerkin Method for 2D Radiation Diffusion Equations
作者:ZHANG Rongpei, YU Xijun, CUI Xia, FENG Tao
期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(5): 647-653.
4. 论文名:RKDG Finite Element Method for Two-dimensional Gas Dynamic Equations in Lagrangian Coordinate
作者:ZHAO Guozhong, YU Xijun, ZHANG Rongpei.
期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(2): 166-174.
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fmy1980

铜虫 (正式写手)


杈杈: 金币+1, 感谢提供有价值的应助信息! 2012-12-23 11:50:56
有付出就有收获,恭喜!
---------------------------------

Accession number:  20121915007939

  Title:  A direct discontinuous Galerkin method for nonlinear Schrödinger equation
  Authors:  Zhang, Rongpei1 ; Yu, Xijun2; Zhao, Guozhong2  
  Author affiliation:  1 School of Sciences, Liaoning Shihua University, Fushun 113001, China  
   2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China  
  Corresponding author:  Zhang, R. (rongpeizhang@163.com)  
  Source title:  Jisuan Wuli/Chinese Journal of Computational Physics
  Abbreviated source title:  Jisuan Wuli
  Volume:  29
  Issue:  2
  Issue date:  March 2012
  Publication year:  2012
  Pages:  175-182
  Language:  Chinese
  ISSN:  1001246X  
  CODEN:  JIWUEP  
  Document type:  Journal article (JA)
  Publisher:  Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China
  Abstract:  We discuss numerical simulation of one- and two-dimensional nonlinear Schro¨dinger (NLS) equations (NLS). With numerical flux of diffusive generalized Riemann problem, a direct discontinuous Galerkin (DDG) method is proposed. L2 stability of the DDG scheme is proved and it is shown that it is a conservative numerical scheme. The one-dimensional case indicates that the DDG scheme simulates various kinds of soliton propagations and it has excellent long-time numerical behaviors. Two-dimensional numerical results demonstrate that the method has high accuracy and is capable of capturing strong gradients.
  Number of references:  23
  Main heading:  Nonlinear equations  
  Controlled terms:  Convergence of numerical methods  -  Galerkin methods  -  Numerical methods  -  Solitons  -  Two dimensional  
  Uncontrolled terms:  Dinger equation  -  Discontinuous galerkin  -  Discontinuous Galerkin methods  -  Numerical flux  -  Numerical results  -  Numerical scheme  -  Riemann problem  -  Soliton propagation  
  Classification code:  902.1 Engineering Graphics -  921.1 Algebra -  921.6 Numerical Methods
  Database:  Compendex
   Compilation and indexing terms, © 2012 Elsevier Inc.

Full-text and Local Holdings Links


-------------------------------------------------------------------------------------------------------------------------------------------------

Accession number:  20124415630870

  Title:  Discontinuous finite element method for 1D non-equilibrium radiation diffusion equations
  Authors:  Zhang, Rongpei1, 3 ; Yu, Xijun2; Cui, Xia2; Feng, Tao3  
  Author affiliation:  1 School of Sciences, Liaoning ShiHua University, Fushun 113001, China  
   2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China  
   3 Graduate School, China Academy of Engineering Physics, Beijing 100088, China  
  Corresponding author:  Zhang, R. (rongpeizhang@163.com)  
  Source title:  Jisuan Wuli/Chinese Journal of Computational Physics
  Abbreviated source title:  Jisuan Wuli
  Volume:  29
  Issue:  5
  Issue date:  September 2012
  Publication year:  2012
  Pages:  641-646
  Language:  Chinese
  ISSN:  1001246X  
  CODEN:  JIWUEP  
  Document type:  Journal article (JA)
  Publisher:  Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China
  Abstract:  We discuss numerical simulation of one-dimensional non-equilibrium radiation diffusion equations. A weighted numerical flux between adjacent grid cells is obtained by solving heat conduction equation with discontinuous coefficient. With this numerical flux of diffusive generalized Riemann problem (dGRP), a discontinuous finite element method is proposed for radiation diffusion equations. A backward Euler time discretization is applied for semi-discrete form and a Picard iteration is used to solve nonlinear system of equations. Numerical results demonstrate that the method has a capability of capturing strong gradients and can be accommodated to discontinuous diffusion coefficient.
  Number of references:  15
  Main heading:  Partial differential equations  
  Controlled terms:  Computer simulation  -  Diffusion  -  Euler equations  -  Finite element method  -  Iterative methods  -  Numerical methods  
  Uncontrolled terms:  Backward Euler  -  Discontinuous coefficients  -  Discontinuous finite element method  -  Grid cells  -  Heat conduction equations  -  Non-equilibrium radiation  -  Numerical flux  -  Numerical results  -  Picard iteration  -  Radiation diffusion equation  -  Riemann problem  -  System of equations  -  Time discretization  
  Classification code:  723.5 Computer Applications -  921 Mathematics -  931.1 Mechanics
  Database:  Compendex
   Compilation and indexing terms, © 2012 Elsevier Inc.

Full-text and Local Holdings Links

-------------------------------------------------------------------------------------------------------------------------------------------------


Accession number:  20124415630871

  Title:  Implicit-explicit integration factor discontinuous Galerkin method for 2D radiation diffusion equations
  Authors:  Zhang, Rongpei1 ; Yu, Xijun2; Cui, Xia2; Feng, Tao2  
  Author affiliation:  1 School of Sciences, Liaoning ShiHua University, Fushun 113001, China  
   2 National Key Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China  
  Corresponding author:  Zhang, R. (rongpeizhang@163.com)  
  Source title:  Jisuan Wuli/Chinese Journal of Computational Physics
  Abbreviated source title:  Jisuan Wuli
  Volume:  29
  Issue:  5
  Issue date:  September 2012
  Publication year:  2012
  Pages:  647-653
  Language:  Chinese
  ISSN:  1001246X  
  CODEN:  JIWUEP  
  Document type:  Journal article (JA)
  Publisher:  Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China
  Abstract:  A numerical method is developed for two-dimensional nonequilibrium radiation diffusion equations. Discontinuous Galerkin method is applied in spatial discretization in which numerical flux is constructed with weighted flux averages. Implicit-explicit integration factor method for time discretization is applied to nonlinear ordinary differential equations which is obtained with discontinuous Galerkin method. Radiation diffusion equations with multiple materials are solved on unstructured grids in numerical tests. It demonstrates that the method is effective for high nonlinear and tightly coupled radiation diffusion equations.
  Number of references:  24
  Main heading:  Integral equations  
  Controlled terms:  Galerkin methods  -  Integration  -  Ordinary differential equations  -  Partial differential equations  -  Two dimensional  
  Uncontrolled terms:  Discontinuous Galerkin finite-element method  -  Integration factor  -  Radiation diffusion equation  -  Unstructured grid  -  Weighted averages  
  Classification code:  902.1 Engineering Graphics -  921.2 Calculus -  921.6 Numerical Methods
  Database:  Compendex
   Compilation and indexing terms, © 2012 Elsevier Inc.

Full-text and Local Holdings Links
-------------------------------------------------------------------------------------------------------------------------------------------------

Accession number:  20121915007938

  Title:  RKDG finite element method for two-dimensional gas dynamic equations in Lagrangian coordinate
  Authors:  Zhao, Guozhong1, 2 ; Yu, Xijun1; Zhang, Rongpei1  
  Author affiliation:  1 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China  
   2 Faculty of Mathematics, Baotou Teachers College, Baotou 014030, China  
  Corresponding author:  Zhao, G. (zhaoguozhongbttc@sina.com)  
  Source title:  Jisuan Wuli/Chinese Journal of Computational Physics
  Abbreviated source title:  Jisuan Wuli
  Volume:  29
  Issue:  2
  Issue date:  March 2012
  Publication year:  2012
  Pages:  166-174
  Language:  Chinese
  ISSN:  1001246X  
  CODEN:  JIWUEP  
  Document type:  Journal article (JA)
  Publisher:  Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China
  Abstract:  We construct a Runge-Kutta discontinuous Galerkin (RKDG) finite element method for two-dimensional compressible gas dynamic equations in Lagrangian coordinate. The equations for fluid dynamics and geometry conservation laws are solved simultaneously. All calculations can be done on fixed meshes. Information of grid velocities are not needed in calculation. Several numerical examples are used to evaluate efficiency and reliability of the scheme. It shows that the algorithm works well.
  Number of references:  26
  Main heading:  Gas dynamics  
  Controlled terms:  Finite element method  -  Galerkin methods  -  Incompressible flow  -  Runge Kutta methods  
  Uncontrolled terms:  Compressible gas dynamics  -  Conservation law  -  Efficiency and reliability  -  Fixed mesh  -  Lagrangian coordinate  -  Numerical example  -  RKDG finite element method  -  Runge-Kutta discontinuous Galerkin  -  Two-dimensional gas  
  Classification code:  631.1.2 Gas Dynamics -  921.6 Numerical Methods
  Database:  Compendex
   Compilation and indexing terms, © 2012 Elsevier Inc.

Full-text and Local Holdings Links
沉舟侧畔千帆过,病树前头万木春
2楼2012-12-23 09:56:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
3楼2012-12-23 15:57:45
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Aaron_2011

铜虫 (初入文坛)

非常感谢fmy1980!
4楼2012-12-26 21:08:04
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 Aaron_2011 的主题更新
信息提示
请填处理意见