| 查看: 862 | 回复: 3 | ||
Aaron_2011铜虫 (初入文坛)
|
[求助]
求助查询4篇EI论文检索号,急需!!
|
|
求牛人帮忙查询三篇EI论文的检索号: 1.论文名:A Direct Discontinuous Galerkin Method for Nonlinear Schrödinger Equation 作者:ZHANG Rongpei, YU Xijun, ZHAO Guozhong 期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(2): 175-182. 2. 论文名:Discontinuous Finite Element Method for 1D Non-equilibrium Radiation Diffusion Equations 作者:ZHANG Rongpei, YU Xijun, CUI Xia, FENG Tao 期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(5): 641-646. 3.论文名:Implicit-explicit Integration Factor Discontinuous Galerkin Method for 2D Radiation Diffusion Equations 作者:ZHANG Rongpei, YU Xijun, CUI Xia, FENG Tao 期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(5): 647-653. 4. 论文名:RKDG Finite Element Method for Two-dimensional Gas Dynamic Equations in Lagrangian Coordinate 作者:ZHAO Guozhong, YU Xijun, ZHANG Rongpei. 期刊:CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(2): 166-174. |
» 猜你喜欢
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
自荐读博
已经有7人回复
自然科学基金委宣布启动申请书“瘦身提质”行动
已经有4人回复
求个博导看看
已经有18人回复
青基代表作,AAAI之类的A会的special track在国内认可度高吗?还是归为workshop之流?
已经有3人回复
上海工程技术大学【激光智能制造】课题组招收硕士
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
哪位好心人帮助查询一下论文是否被ei和istp检索,多谢
已经有6人回复
国际会议论文(EI已收录)有影响因子么?怎么查询?
已经有10人回复
帮忙查询论文Ei检索号
已经有6人回复
求助大家有没有管理学方面被EI和SCI检索的国外期刊啊
已经有8人回复
求助EI或ISTP检索收录的真伪?
已经有10人回复
ICNTAM2012 会议论文什么时候能被EI和ISTP检索到??
已经有9人回复
被SCI和EI检索的论文从哪里可以下载【求助完结】
已经有10人回复
急求文章的EI检索号(1篇含SCI号),
已经有6人回复
论文进入Ei Compendex后是否一定被Ei检索?
已经有10人回复
★
杈杈: 金币+1, 感谢提供有价值的应助信息! 2012-12-23 11:50:56
杈杈: 金币+1, 感谢提供有价值的应助信息! 2012-12-23 11:50:56
|
有付出就有收获,恭喜! --------------------------------- Accession number: 20121915007939 Title: A direct discontinuous Galerkin method for nonlinear Schrödinger equation Authors: Zhang, Rongpei1 ; Yu, Xijun2; Zhao, Guozhong2 Author affiliation: 1 School of Sciences, Liaoning Shihua University, Fushun 113001, China 2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Corresponding author: Zhang, R. (rongpeizhang@163.com) Source title: Jisuan Wuli/Chinese Journal of Computational Physics Abbreviated source title: Jisuan Wuli Volume: 29 Issue: 2 Issue date: March 2012 Publication year: 2012 Pages: 175-182 Language: Chinese ISSN: 1001246X CODEN: JIWUEP Document type: Journal article (JA) Publisher: Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China Abstract: We discuss numerical simulation of one- and two-dimensional nonlinear Schro¨dinger (NLS) equations (NLS). With numerical flux of diffusive generalized Riemann problem, a direct discontinuous Galerkin (DDG) method is proposed. L2 stability of the DDG scheme is proved and it is shown that it is a conservative numerical scheme. The one-dimensional case indicates that the DDG scheme simulates various kinds of soliton propagations and it has excellent long-time numerical behaviors. Two-dimensional numerical results demonstrate that the method has high accuracy and is capable of capturing strong gradients. Number of references: 23 Main heading: Nonlinear equations Controlled terms: Convergence of numerical methods - Galerkin methods - Numerical methods - Solitons - Two dimensional Uncontrolled terms: Dinger equation - Discontinuous galerkin - Discontinuous Galerkin methods - Numerical flux - Numerical results - Numerical scheme - Riemann problem - Soliton propagation Classification code: 902.1 Engineering Graphics - 921.1 Algebra - 921.6 Numerical Methods Database: Compendex Compilation and indexing terms, © 2012 Elsevier Inc. Full-text and Local Holdings Links ------------------------------------------------------------------------------------------------------------------------------------------------- Accession number: 20124415630870 Title: Discontinuous finite element method for 1D non-equilibrium radiation diffusion equations Authors: Zhang, Rongpei1, 3 ; Yu, Xijun2; Cui, Xia2; Feng, Tao3 Author affiliation: 1 School of Sciences, Liaoning ShiHua University, Fushun 113001, China 2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 3 Graduate School, China Academy of Engineering Physics, Beijing 100088, China Corresponding author: Zhang, R. (rongpeizhang@163.com) Source title: Jisuan Wuli/Chinese Journal of Computational Physics Abbreviated source title: Jisuan Wuli Volume: 29 Issue: 5 Issue date: September 2012 Publication year: 2012 Pages: 641-646 Language: Chinese ISSN: 1001246X CODEN: JIWUEP Document type: Journal article (JA) Publisher: Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China Abstract: We discuss numerical simulation of one-dimensional non-equilibrium radiation diffusion equations. A weighted numerical flux between adjacent grid cells is obtained by solving heat conduction equation with discontinuous coefficient. With this numerical flux of diffusive generalized Riemann problem (dGRP), a discontinuous finite element method is proposed for radiation diffusion equations. A backward Euler time discretization is applied for semi-discrete form and a Picard iteration is used to solve nonlinear system of equations. Numerical results demonstrate that the method has a capability of capturing strong gradients and can be accommodated to discontinuous diffusion coefficient. Number of references: 15 Main heading: Partial differential equations Controlled terms: Computer simulation - Diffusion - Euler equations - Finite element method - Iterative methods - Numerical methods Uncontrolled terms: Backward Euler - Discontinuous coefficients - Discontinuous finite element method - Grid cells - Heat conduction equations - Non-equilibrium radiation - Numerical flux - Numerical results - Picard iteration - Radiation diffusion equation - Riemann problem - System of equations - Time discretization Classification code: 723.5 Computer Applications - 921 Mathematics - 931.1 Mechanics Database: Compendex Compilation and indexing terms, © 2012 Elsevier Inc. Full-text and Local Holdings Links ------------------------------------------------------------------------------------------------------------------------------------------------- Accession number: 20124415630871 Title: Implicit-explicit integration factor discontinuous Galerkin method for 2D radiation diffusion equations Authors: Zhang, Rongpei1 ; Yu, Xijun2; Cui, Xia2; Feng, Tao2 Author affiliation: 1 School of Sciences, Liaoning ShiHua University, Fushun 113001, China 2 National Key Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Corresponding author: Zhang, R. (rongpeizhang@163.com) Source title: Jisuan Wuli/Chinese Journal of Computational Physics Abbreviated source title: Jisuan Wuli Volume: 29 Issue: 5 Issue date: September 2012 Publication year: 2012 Pages: 647-653 Language: Chinese ISSN: 1001246X CODEN: JIWUEP Document type: Journal article (JA) Publisher: Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China Abstract: A numerical method is developed for two-dimensional nonequilibrium radiation diffusion equations. Discontinuous Galerkin method is applied in spatial discretization in which numerical flux is constructed with weighted flux averages. Implicit-explicit integration factor method for time discretization is applied to nonlinear ordinary differential equations which is obtained with discontinuous Galerkin method. Radiation diffusion equations with multiple materials are solved on unstructured grids in numerical tests. It demonstrates that the method is effective for high nonlinear and tightly coupled radiation diffusion equations. Number of references: 24 Main heading: Integral equations Controlled terms: Galerkin methods - Integration - Ordinary differential equations - Partial differential equations - Two dimensional Uncontrolled terms: Discontinuous Galerkin finite-element method - Integration factor - Radiation diffusion equation - Unstructured grid - Weighted averages Classification code: 902.1 Engineering Graphics - 921.2 Calculus - 921.6 Numerical Methods Database: Compendex Compilation and indexing terms, © 2012 Elsevier Inc. Full-text and Local Holdings Links ------------------------------------------------------------------------------------------------------------------------------------------------- Accession number: 20121915007938 Title: RKDG finite element method for two-dimensional gas dynamic equations in Lagrangian coordinate Authors: Zhao, Guozhong1, 2 ; Yu, Xijun1; Zhang, Rongpei1 Author affiliation: 1 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 2 Faculty of Mathematics, Baotou Teachers College, Baotou 014030, China Corresponding author: Zhao, G. (zhaoguozhongbttc@sina.com) Source title: Jisuan Wuli/Chinese Journal of Computational Physics Abbreviated source title: Jisuan Wuli Volume: 29 Issue: 2 Issue date: March 2012 Publication year: 2012 Pages: 166-174 Language: Chinese ISSN: 1001246X CODEN: JIWUEP Document type: Journal article (JA) Publisher: Editorial Board of Chinese Journal of Computational, P.O.Box 8009, Beijing, 100088, China Abstract: We construct a Runge-Kutta discontinuous Galerkin (RKDG) finite element method for two-dimensional compressible gas dynamic equations in Lagrangian coordinate. The equations for fluid dynamics and geometry conservation laws are solved simultaneously. All calculations can be done on fixed meshes. Information of grid velocities are not needed in calculation. Several numerical examples are used to evaluate efficiency and reliability of the scheme. It shows that the algorithm works well. Number of references: 26 Main heading: Gas dynamics Controlled terms: Finite element method - Galerkin methods - Incompressible flow - Runge Kutta methods Uncontrolled terms: Compressible gas dynamics - Conservation law - Efficiency and reliability - Fixed mesh - Lagrangian coordinate - Numerical example - RKDG finite element method - Runge-Kutta discontinuous Galerkin - Two-dimensional gas Classification code: 631.1.2 Gas Dynamics - 921.6 Numerical Methods Database: Compendex Compilation and indexing terms, © 2012 Elsevier Inc. Full-text and Local Holdings Links |

2楼2012-12-23 09:56:27
![]() |
3楼2012-12-23 15:57:45
Aaron_2011
铜虫 (初入文坛)
- 应助: 0 (幼儿园)
- 金币: 111.4
- 帖子: 17
- 在线: 33.9小时
- 虫号: 1521355
- 注册: 2011-12-03
- 性别: GG
- 专业: 计算数学与科学工程计算
4楼2012-12-26 21:08:04







回复此楼
