| 查看: 1101 | 回复: 2 | ||
| 当前主题已经存档。 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[资源]
Ductile crystalline–amorphous nanolaminates
|
||
|
Ductile crystalline–amorphous nanolaminates Yinmin Wang*†‡, Ju Li§, Alex V. Hamza*†, and Troy W. Barbee, Jr.† *Nanoscale Synthesis and Characterization Laboratory, †Chemistry, Materials, and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; and §Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 Edited by William D. Nix, Stanford University, Stanford, CA, and approved May 25, 2007 (received for review March 14, 2007) (美国科学院院刊) It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper–zirconium glass nanolaminates. These nanocrystalline–amorphous nanolaminates exhibit a high flow stress of 1.09 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 1.7%, which is six to eight times higher than that typically observed in conventional crystalline– crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous–crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility. metallic glass /size-dependent plasticity / nanocrystalline materials /amorphous–crystalline interface / tensile ductility |
» 猜你喜欢
售SCI一区文章,我:8 O5 51O 54,科目齐全,可+急
已经有4人回复
版面费该交吗
已经有8人回复
售SCI一区文章,我:8 O5 51O 54,科目齐全,可+急
已经有5人回复
售SCI一区文章,我:8 O5 51O 54,科目齐全,可+急
已经有3人回复
基金正文30页指的是报告正文还是整个申请书
已经有6人回复
面上可以超过30页吧?
已经有4人回复
过年走亲戚时感受到了所开私家车的鄙视链
已经有12人回复
为什么中国大学教授们水了那么多所谓的顶会顶刊,但还是做不出宇树机器人?
已经有5人回复
售SCI一区文章,我:8 O5 51O 54,科目齐全,可+急
已经有4人回复
售SCI一区文章,我:8 O5 51O 54,科目齐全,可+急
已经有6人回复
3楼2007-07-15 13:20:16
2楼2007-07-15 04:37:20













回复此楼