| 查看: 1458 | 回复: 17 | |||
| 【奖励】 本帖被评价4次,作者allawwp增加金币 3.5 个 | |||
| 当前主题已经存档。 | |||
[资源]
升为铁虫,可以发附件了,重发 量子多体理论
|
|||
|
Introduction This monogram is written with the graduate student in mind. I had in mind to write a short, crisp book that would introduce my students to the basic ideas and concepts behind many body physics. At the same time, I felt very strongly that I should like to share my excitement with this eld, for without feeling the thrill of entering uncharted territory, I do not think one has the motivation to learn and to make the passage from learning to research. ?? 1 Introduction 5 2 Scales and Complexity 11 2.1 Time scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 L: Length scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 N: particle number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 C: Complexity and diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Quantum Fields: Overview 17 4 Collective Quantum Fields 27 4.1 Harmonic oscillator: a zero-dimensional eld theory . . . . . . . . . . . . . 27 4.2 Collective modes: phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 The Thermodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Continuum Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Exercises for chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Conserved Particles 53 5.1 Commutation and Anticommutation Algebras . . . . . . . . . . . . . . . . . 54 5.1.1 Heuristic Derivation for Bosons . . . . . . . . . . . . . . . . . . . . . 55 5.2 What about Fermions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 Field operators in dierent bases . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 Fields as particle creation and annihilation operators. . . . . . . . . . . . . 59 5.5 The vacuum and the many body wavefunction . . . . . . . . . . . . . . . . 62 5.6 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7 Identical Conserved Particles in Thermal Equilibrium . . . . . . . . . . . . 68 5.7.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.7.2 Identication of the Free energy: Key Thermodynamic Properties . 71 5.7.3 Independent Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.8 Exercises for chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Simple Examples of Second-quantization 79 6.1 Jordan Wigner Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 The Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 Gas of charged particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.1 Link with rst quantization . . . . . . . . . . . . . . . . . . . . . . . 88 6.4 Non-interacting particles in thermal equilibrium . . . . . . . . . . . . . . . . 90 6.4.1 Fluid of non-interacting Fermions . . . . . . . . . . . . . . . . . . . . 91 6.4.2 Fluid of Bosons: Bose Einstein Condensation . . . . . . . . . . . . . 94 6.5 Exercises for chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 Greens Functions 105 7.1 Interaction representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1.1 Driven Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . 111 7.2 Greens Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2.1 Green's function for free Fermions . . . . . . . . . . . . . . . . . . . 117 7.2.2 Green's function for free Bosons . . . . . . . . . . . . . . . . . . . . 120 7.3 Adiabatic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.1 Gell-Man Low Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.3.2 Generating Function for Free fermions . . . . . . . . . . . . . . . . . 125 7.3.3 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . 127 7.4 Many particle Green's functions . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.5 Landau's Fermi Liquid Theory . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.6 Exercises for chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8 Feynman Diagrams: T=0 145 8.1 Heuristic Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.2 Developing the Feynman Diagram Expansion . . . . . . . . . . . . . . . . . 152 8.2.1 Symmetry factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2.2 Linked Cluster Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.3 Feynman rules in momentum space . . . . . . . . . . . . . . . . . . . . . . . 163 8.3.1 Relationship between energy, and the S-matrix . . . . . . . . . . . . 164 8.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.4.1 Hartree Fock Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.4.2 Response functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.4.3 Magnetic susceptibility of non-interacting electron gas . . . . . . . . 172 8.4.4 Electron in a scattering potential . . . . . . . . . . . . . . . . . . . . 177 8.5 The self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8.5.1 Hartree-Fock Self-energy . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.6 Large-N electron gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.7 Exercises for chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 9 Finite Temperature Many Body Physics 193 9.1 Imaginary time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 9.1.1 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.2 Imaginary Time Green Functions . . . . . . . . . . . . . . . . . . . . . . . . 199 9.2.1 Periodicity and Antiperiodicity . . . . . . . . . . . . . . . . . . . . . 200 9.2.2 Matsubara Representation . . . . . . . . . . . . . . . . . . . . . . . . 201 9.3 The contour integral method . . . . . . . . . . . . . . . . . . . . . . . . . . 204 9.4 Generating Function and Wick's theorem . . . . . . . . . . . . . . . . . . . 208 9.5 Feynman diagram expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.5.1 Feynman rules from Functional Derivative . . . . . . . . . . . . . . . 212 9.5.2 Feynman rules in frequency/momentum space . . . . . . . . . . . . . 216 9.5.3 Linked Cluster Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.6 Examples of the application of the Matsubara Technique . . . . . . . . . . . 219 9.6.1 Hartree Fock at a nite temperature. . . . . . . . . . . . . . . . . . 220 9.6.2 Electron in a disordered potential . . . . . . . . . . . . . . . . . . . . 221 9.7 Interacting electrons and phonons . . . . . . . . . . . . . . . . . . . . . . . . 229 9.7.1 2F: the electron-phonon coupling function . . . . . . . . . . . . . . 237 9.7.2 Mass Renormalization by the electron phonon interaction . . . . . . 240 9.7.3 Migdal's theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9.8 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.9 Exercises for chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 10 Fluctuation Dissipation Theorem and Linear Response Theory 253 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 10.2 Fluctuation dissipation theorem for a classical harmonic oscillator . . . . . 255 10.3 Quantum Mechanical Response Functions. . . . . . . . . . . . . . . . . . . . 257 10.4 Fluctuations and Dissipation in a quantum world . . . . . . . . . . . . . . . 259 10.4.1 Spectral decomposition I: the correlation function S(t t0) . . . . . 259 10.4.2 Spectral decomposition II: the response function (t t0) . . . . . . 260 10.4.3 Quantum Fluctuation dissipation Theorem . . . . . . . . . . . . . . 260 10.4.4 Spectral decomposition III: uctuations in imaginary time . . . . . . 261 10.5 Calculation of response functions . . . . . . . . . . . . . . . . . . . . . . . . 261 10.6 Spectroscopy: linking measurement and correlation . . . . . . . . . . . . . . 265 10.7 Electron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 10.7.1 Formal properties of the electron Green function . . . . . . . . . . . 269 10.7.2 Tunneling spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 270 10.7.3 ARPES, AIPES and inverse PES . . . . . . . . . . . . . . . . . . . . 273 10.8 Spin Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 10.8.1 D.C. magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . 275 10.8.2 Neutron scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 10.8.3 NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 10.9 Electron Transport spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 281 10.9.1 Resistivity and the transport relaxation rate . . . . . . . . . . . . . 281 10.9.2 Optical conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 10.9.3 The f-sum rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 10.10Exercises for chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 11 Electron transport Theory 293 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 11.2 The Kubo Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 11.3 Drude conductivity: diagramatic derivation . . . . . . . . . . . . . . . . . . 300 11.4 Electron Diusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 11.5 Weak Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 11.6 Exercises for chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 12 Path Integrals and Phase transitions 323 12.1 Introduction: Broken symmetry, coherent states and the path integral approach323 12.2 Coherent states and Grassman mathematics . . . . . . . . . . . . . . . . . . 328 12.2.1 Completeness and matrix elements . . . . . . . . . . . . . . . . . . . 330 12.3 Path integral for the partition function . . . . . . . . . . . . . . . . . . . . . 332 12.4 General evaluation of Path Integral for non-interacting Fermions . . . . . . 337 12.5 Hubbard Stratonovich transformation . . . . . . . . . . . . . . . . . . . . . 339 12.6 Superconductivity and BCS theory . . . . . . . . . . . . . . . . . . . . . . . 342 12.6.1 Introduction: Superconductivity pre-history . . . . . . . . . . . . . . 342 12.6.2 The BCS Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 343 12.6.3 Computing Tc carefully . . . . . . . . . . . . . . . . . . . . . . . . . 347 12.6.4 The Nambu Greens function . . . . . . . . . . . . . . . . . . . . . . 348 12.6.5 The structure of the Boguilubov quasiparticle and the BCS wavefunction348 12.6.6 Twisting the phase: the Anderson Higg's mechanism . . . . . . . . . 348 A Appendix: Grassman Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 348 A.1 Dierentiation and Integration . . . . . . . . . . . . . . . . . . . . . 348 A.2 Change of variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 A.3 Gaussian Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 B Exercises for chapter 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 |
» 收录本帖的淘帖专辑推荐
学术 |
» 猜你喜欢
拟解决的关键科学问题还要不要写
已经有11人回复
救命帖
已经有5人回复
限项规定
已经有5人回复
为什么nbs上溴 没有产物点出现呢
已经有9人回复
招博士
已经有3人回复
存款400万可以在学校里躺平吗
已经有35人回复
最失望的一年
已经有18人回复
求推荐博导
已经有4人回复
求推荐英文EI期刊
已经有5人回复
疑惑?
已经有5人回复
2楼2007-07-13 09:19:15
★★★★★ 五星级,优秀推荐
★
fenghbu(金币+1):thanks
fenghbu(金币+1):thanks
|
楼主收到啦, 受楼主之托共享《量子多体理论》 需要的到我的56邮箱共享 共享名:yuanfen800611@56.com 文件名:书 没有56邮箱的自己从下面附件下载 感谢楼主发布资源 ![]() ![]() ![]() ![]() [ Last edited by yuanfen2006 on 2007-7-13 at 16:06 ] |
3楼2007-07-13 10:13:43
4楼2007-07-13 11:51:14
5楼2007-07-13 13:37:05
6楼2007-07-13 14:18:48
★★★★★ 五星级,优秀推荐
|
支持一下 也给我一份吧 quantumfang@163.com 想知道是谁写的啊? [ Last edited by quantumfang on 2007-7-13 at 21:32 ] |
7楼2007-07-13 21:25:50
8楼2007-07-13 21:44:36
9楼2007-07-14 10:04:35
10楼2007-07-14 12:10:12
11楼2007-07-14 15:00:16
12楼2007-07-16 12:06:51
13楼2007-07-16 12:33:16
14楼2007-07-16 14:47:55
15楼2007-08-06 16:19:27
16楼2008-02-25 15:15:41
17楼2008-02-25 20:06:17














回复此楼
