24小时热门版块排行榜    

查看: 157  |  回复: 0
当前主题已经存档。

nnxll

金虫 (正式写手)

[交流] 【转贴】New Foundations for Classical Mechanics

New Foundations for Classical Mechanics (Fundamental Theories of Physics)





Publisher:   Springer
Number Of Pages:   724
Publication Date:   1999-12
Sales Rank:   532779
ISBN / ASIN:   0792355148
EAN:   9780792355144
Binding:   Paperback
Manufacturer:   Springer
Studio:   Springer
Average Rating:   4.5


This book provides an introduction to geometric algebra as a unified language for physics and mathematics. It contains extensive applications to classical mechanics in a textbook format suitable for courses at an intermediate level. The text is supported by more than 200 diagrams to help develop geometrical and physical intuition. Besides covering the standard material for a course on the mechanics of particles and rigid bodies, the book introduces new, coordinate-free methods for rotational dynamics and orbital mechanics, developing these subjects to a level well beyond that of other textbooks. These methods have been widely applied in recent years to biomechanics and robotics, to computer vision and geometric design, to orbital mechanics in government and industrial space programs, as well as to other branches of physics. The book applies them to the major perturbations in the solar system, including the planetary perturbations of Mercury's perihelion. Geometric algebra integrates conventional vector algebra (along with its established notations) into a system with all the advantages of quaternions and spinors. Thus, it increases the power of the mathematical language of classical mechanics while bringing it closer to the language of quantum mechanics. This book systematically develops purely mathematical applications of geometric algebra useful in physics, including extensive applications to linear algebra and transformation groups. It contains sufficient material for a course on mathematical topics alone. The second edition has been expanded by nearly a hundred pages on relativistic mechanics. The treatment is unique in its exclusive use of geometric algebra and in its detailed treatment of spacetime maps, collisions, motion in uniform fields and relativistic precession. It conforms with Einstein's view that the Special Theory of Relativity is the culmination of developments in classical mechanics.

Review:

A problem with relativistic mechanics...

David Hestenes is a forerunner of the modern development of Clifford algebra. His current research activities can be followed in the site http://modelingnts.la.asu.edu/GC_R&D.html. Probably his most important book until now (written with Garret Sobczyk) was "Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics" (Dordrecht: Kluwer Academic Publishers, 1984) also available at Amazon.com. This book on the new foundations for classical mechanics (second edition) was written as an introduction to geometric algebra. The term "geometric algebra" was coined to stress that this formulation of Clifford algebra is a unified language for physics and mathematics; it is not a matrix algebra (as used in quantum mechanics in the disguised forms of Pauli and Dirac matrices) as it uses a new property, the contraction, which makes it different from other associative algebras. A recent book on geometric algebra is "Geometric Algebra for Physicists" by Chris Doran and Anthony Lasenby (Cambridge: Cambridge University Press, 2003) - see the site http://www.mrao.cam.ac.uk/~clifford/.

Geometric algebra is a graded algebra based on the geometric product of vectors which reduces to the inner product (a scalar) when the two vectors are parallel and to the outer product (a bivector) when the two vectors are orthogonal. The geometric product is associative and can be used in spaces with any dimension (as opposed to the cross product of vectors which is not associative and can only be used in three or seven dimensions). Therefore, the geometric product is able to generate several graded algebras: (i) in two dimensions we recover the complex numbers as elements of a real algebra, not as elements of a field; (ii) in three dimensions we get a geometric algebra that is far better than the Gibbsian approach mainly due to the geometric role of rotors is reflections and rotations; (iii) in four dimensions we obtain the so-called spacetime algebra which is perfect for Minkowski spacetime within the context of special relativity - see the paper from Hestenes in American Journal of Physics (vol. 71, pp. 691-714, June 2003). Hamilton's quaternions are properly understood. Even as a new gauge theory of gravity on flat spacetime Hestenes' geometric algebra plays a very important role - see the paper from Hestenes in Foundations of Physics (vol. 25, pp. 903-970, June 2005). The clear and insightful approach that geometric algebra can bring to the Dirac equation is also remarkable.

My only problem with this book is due to Chapter 9 on relativistic mechanics. In this chapter Hestenes takes the usual approach that can be found in traditional four-vectors, by representing an event as a paravector, i.e., as a sum of a scalar and a three-dimensional vector (in Euclidean space). This kind of approach doesn't take advantage of geometric algebra (as in his article on spacetime algebra for Am. J. Phys.) because spatial vectors are not directly linked to an observer (and to its proper time) as they are in spacetime algebra where the so-called space-time split clearly leads to an invariant and proper formulation of physics. In Chapter 9, indeed, these paravectors induce a relativistic approach and not a proper approach. Nevertheless, apart from this remark, my overall comment on this book is very positive.Password: gigapedia.org
Type: djvu
Size: 4.22 MB
MD5: b91fd367ec9ad020fded6a83e2b88a6f

http://rapidshare.com/files/42185396/0792355148.zip.html

http://mihd.net/ltksv4

[ Last edited by laizuliang on 2007-10-31 at 16:27 ]
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 nnxll 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见