| 查看: 1508 | 回复: 15 | |||
| 当前主题已经存档。 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
Advanced Inorganic Materials for Photovoltaics
|
|||
| The recent issue in MRS Bulletin summarized the current research status and the foreground of photovoltaics. Since there are friends who are asking for the information about the research status of this area, I list the papers therein here for those who are interested in studying solar cells, but may not have access to them online. They may give you a good idea for this area. |
Silicon Solar Cells
|
http://www.box.net/shared/d38zoidgxl Amorphous Silicon, Microcrystalline Silicon, and Thin-Film Polycrystalline Silicon Solar Cells Author(s): Ruud E.I. Schropp, Reinhard Carius, and Guy Beaucarne Abstract Thin-film solar cell technologies based on Si with a thickness of less than a few micrometers combine the low-cost potential of thin-film technologies with the advantages of Si as an abundantly available element in the earth’s crust and a readily manufacturable material for photovoltaics (PVs). In recent years, several technologies have been developed that promise to take the performance of thin-film silicon PVs well beyond that of the currently established amorphous Si PV technology. Thin-film silicon, like no other thin-film material, is very effective in tandem and triple-junction solar cells. The research and development on thin crystalline silicon on foreign substrates can be divided into two different routes: a low-temperature route compatible with standard float glass or even plastic substrates, and a high-temperature route (> 600°C). This article reviews the material properties and technological challenges of the different thin-film silicon PV materials. |
3楼2007-06-15 05:26:07
High-Efficiency Multijunction Solar Cells
★ ★ ★ ★
popsheng(金币+4,VIP+0):很好
popsheng(金币+4,VIP+0):很好
|
http://www.box.net/shared/acd0l9s7gc Author(s): Frank Dimroth and Sarah Kurtz Abstract The efficiency of a solar cell can be increased by stacking multiple solar cells with a range of bandgap energies, resulting in a multijunction solar cell with a maximum theoretical efficiency limit of 86.8%. III–V compound semiconductors are good candidates for fabricating such multijunction solar cells for two reasons: they can be grown with excellent material quality; and their bandgaps span a wide spectral range, mostly with direct bandgaps, implying a high absorption coefficient. These factors are the reason for the success of this technology, which has achieved 39% efficiency, the highest solar-to-electric conversion efficiency of any photovoltaic device to date. This article explores the materials science of today’s high-efficiency multijunction cells and describes challenges associated with new materials developments and how they may lead to next-generation, multijunction solar cell concepts. |
2楼2007-06-15 05:23:59
Materials Challenges for CdTe and CuInSe2 Photovoltaics
|
http://www.box.net/shared/4p07albg2l Author(s): Joseph D. Beach and Brian E. McCandless Abstract The record laboratory cell (~1 cm2 area) efficiency for thin-film cadmium telluride (CdTe) is 16.5%, and that for a copper indium diselenide (CuInSe2) thin-film alloy is 19.5%. Commercially produced CdTe and CuInSe2 modules (0.5-1 m2 area) have efficiencies in the 7-11% range. Research is needed both to increase laboratory cell efficiencies and to bring those small-area efficiencies to large-area production. Increases in laboratory CdTe cell efficiency will require increasing open-circuit voltage, which will allow cells to harvest more energy from each absorbed photon. This will require extending the minority carrier lifetime from its present T < 2 ns to T > 10 ns and increasing hole concentration in the CdTe beyond 1015 cm2, which appears to be limited by compensating defects. Increasing laboratory CuInSe2-based cell efficiency significantly beyond 19.5% will also require increasing the open-circuit voltage, either by increasing the bandgap, the doping level, or the minority carrier lifetime. The photovoltaic cells in commercial modules occupy tens of square centimeters, and both models and experiments have shown that low-performing regions in small fractions of a cell can significantly reduce the overall cell performance. Increases in commercial module efficiency will require control of materials properties across large deposition areas in a high-throughput environment to minimize such non-uniformities. This article discusses approaches used and research needed to increase the ultimate efficiencies of CdTe-and CuInSe2-based devices and translate these gains to commercial photovoltaic modules. |
4楼2007-06-15 05:27:09
Reconstruction of Historical Alloys for Pipe Organs
|
http://www.box.net/shared/ykxblt0gss Author(s): Brigitte Baretzky, Milan Friesel, and Boris Straumal Abstract The pipe organ is the king of musical instruments. No other instrument can compare with the pipe organ in power, timbre, dynamic range, tonal complexity, and sheer majesty of sound. The art of organ building reached its peak in the Baroque Age (~1600–1750); with the industrial revolution in the 19th century, organ building shifted from a traditional artisans’ work to factory production, changing the aesthetic concept and design of the organ so that the profound knowledge of the organ masters passed down over generations was lost. This knowledge is being recreated via close collaborations between research scientists, musicians, and organ builders throughout Europe. Dozens of metallic samples taken from 17th- to 19th-century organ pipes have been investigated to determine their composition, microstructure, properties, and manufacturing processes using sophisticated methods of materials science. Based upon these data, technologies for casting, forming, hammering, rolling, filing, and annealing selected lead-tin pipe alloys and brass components for reed pipes have been reinvented and customized to reproduce those from characteristic time periods and specific European regions. The new materials recreated in this way are currently being processed and used by organ builders for the restoration of period organs and the manufacture of new organs with true Baroque sound. |
5楼2007-06-15 05:29:01













回复此楼