24小时热门版块排行榜    

查看: 537  |  回复: 0

天堂地狱之间

银虫 (小有名气)

[求助] 新手G03计算过程中出错,请各位指教!

输入文件:

%chk=NPNziyouji
#T UB3LYP/6-31G(d) opt

NPNziyouji opt

0  1
C 0   -1.758098   -0.297868    0.000000
C 0   -0.439146    0.463629    0.000000
C 0    0.712114   -0.519641    0.000000
O 0    1.899773    0.225376   -0.000000
H 0   -2.610699    0.417549    0.000000
H 0   -1.825684   -0.942137    0.905041
H 0   -1.825684   -0.942137   -0.905041
H 0   -0.380505    1.101811    0.909964
H 0   -0.380505    1.101811   -0.909964
H 0    0.700438   -1.101811   -0.946174
H 0    0.700438   -1.101811    0.946174
H 0    6.058339   -3.389612    0.000000

计算出错时给出的结果:

Entering Link 1 = f:\GW03\l1.exe PID=      6868.
  
Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc.
                  All Rights Reserved.
  
This is the Gaussian(R) 03 program.  It is based on the
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
  
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
  
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
  
The following legend is applicable only to US Government
contracts under DFARS:
  
                    RESTRICTED RIGHTS LEGEND
  
Use, duplication or disclosure by the US Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.
  
Gaussian, Inc.
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA
  
The following legend is applicable only to US Government
contracts under FAR:
  
                    RESTRICTED RIGHTS LEGEND
  
Use, reproduction and disclosure by the US Government is subject
to restrictions as set forth in subparagraph (c) of the
Commercial Computer Software - Restricted Rights clause at FAR
52.227-19.
  
Gaussian, Inc.
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA
  
  
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc.  The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program.  By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
  

Cite this work as:
Gaussian 03, Revision B.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 2003.

*********************************************
Gaussian 03:  x86-Win32-G03RevB.01 3-Mar-2003
                  13-Sep-2012
*********************************************
%chk=NPNziyouji
Default route:  MaxDisk=2000MB
----------------------
#T UB3LYP/6-31G(d) opt
----------------------
--------------
NPNziyouji opt
--------------
Symbolic Z-matrix:
Charge =  0 Multiplicity = 1
C                    0    -1.7581   -0.29787   0.
C                    0    -0.43915   0.46363   0.
C                    0     0.71211  -0.51964   0.
O                    0     1.89977   0.22538   0.
H                    0    -2.6107    0.41755   0.
H                    0    -1.82568  -0.94214   0.90504
H                    0    -1.82568  -0.94214  -0.90504
H                    0    -0.38051   1.10181   0.90996
H                    0    -0.38051   1.10181  -0.90996
H                    0     0.70044  -1.10181  -0.94617
H                    0     0.70044  -1.10181   0.94617
H                    0     6.05834  -3.38961   0.


GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Initialization pass.
                           ----------------------------
                           !    Initial Parameters    !
                           ! (Angstroms and Degrees)  !
--------------------------                            --------------------------
! Name  Definition              Value          Derivative Info.                !
--------------------------------------------------------------------------------
! R1    R(1,2)                  1.523          estimate D2E/DX2                !
! R2    R(1,5)                  1.113          estimate D2E/DX2                !
! R3    R(1,6)                  1.113          estimate D2E/DX2                !
! R4    R(1,7)                  1.113          estimate D2E/DX2                !
! R5    R(2,3)                  1.514          estimate D2E/DX2                !
! R6    R(2,8)                  1.113          estimate D2E/DX2                !
! R7    R(2,9)                  1.113          estimate D2E/DX2                !
! R8    R(3,4)                  1.402          estimate D2E/DX2                !
! R9    R(3,10)                 1.111          estimate D2E/DX2                !
! R10   R(3,11)                 1.111          estimate D2E/DX2                !
! R11   R(3,12)                 6.0679         estimate D2E/DX2                !
! R12   R(4,12)                 5.5102         estimate D2E/DX2                !
! A1    A(2,1,5)              110.0            estimate D2E/DX2                !
! A2    A(2,1,6)              110.0            estimate D2E/DX2                !
! A3    A(2,1,7)              110.0            estimate D2E/DX2                !
! A4    A(5,1,6)              109.0            estimate D2E/DX2                !
! A5    A(5,1,7)              109.0            estimate D2E/DX2                !
! A6    A(6,1,7)              108.8118         estimate D2E/DX2                !
! A7    A(1,2,3)              109.5            estimate D2E/DX2                !
! A8    A(1,2,8)              109.41           estimate D2E/DX2                !
! A9    A(1,2,9)              109.41           estimate D2E/DX2                !
! A10   A(3,2,8)              109.41           estimate D2E/DX2                !
! A11   A(3,2,9)              109.41           estimate D2E/DX2                !
! A12   A(8,2,9)              109.6874         estimate D2E/DX2                !
! A13   A(2,3,4)              107.4            estimate D2E/DX2                !
! A14   A(2,3,10)             109.41           estimate D2E/DX2                !
! A15   A(2,3,11)             109.41           estimate D2E/DX2                !
! A16   A(2,3,12)             167.7278         estimate D2E/DX2                !
! A17   A(4,3,10)             106.7            estimate D2E/DX2                !
! A18   A(4,3,11)             106.7            estimate D2E/DX2                !
! A19   A(10,3,11)            116.7827         estimate D2E/DX2                !
! A20   A(10,3,12)             76.1969         estimate D2E/DX2                !
! A21   A(11,3,12)             76.1969         estimate D2E/DX2                !
! D1    D(5,1,2,3)            180.0            estimate D2E/DX2                !
! D2    D(5,1,2,8)             60.0948         estimate D2E/DX2                !
! D3    D(5,1,2,9)            -60.0948         estimate D2E/DX2                !
! D4    D(6,1,2,3)             59.9224         estimate D2E/DX2                !
! D5    D(6,1,2,8)            -59.9827         estimate D2E/DX2                !
! D6    D(6,1,2,9)            179.8276         estimate D2E/DX2                !
! D7    D(7,1,2,3)            -59.9224         estimate D2E/DX2                !
! D8    D(7,1,2,8)           -179.8276         estimate D2E/DX2                !
! D9    D(7,1,2,9)             59.9827         estimate D2E/DX2                !
! D10   D(1,2,3,4)            180.0            estimate D2E/DX2                !
! D11   D(1,2,3,10)            64.551          estimate D2E/DX2                !
! D12   D(1,2,3,11)           -64.551          estimate D2E/DX2                !
! D13   D(1,2,3,12)           180.0            estimate D2E/DX2                !
! D14   D(8,2,3,4)            -60.0948         estimate D2E/DX2                !
! D15   D(8,2,3,10)          -175.5438         estimate D2E/DX2                !
! D16   D(8,2,3,11)            55.3541         estimate D2E/DX2                !
! D17   D(8,2,3,12)           -60.0948         estimate D2E/DX2                !
! D18   D(9,2,3,4)             60.0948         estimate D2E/DX2                !
! D19   D(9,2,3,10)           -55.3541         estimate D2E/DX2                !
! D20   D(9,2,3,11)           175.5438         estimate D2E/DX2                !
! D21   D(9,2,3,12)            60.0948         estimate D2E/DX2                !
--------------------------------------------------------------------------------
Number of steps in this run=  64 maximum allowed number of steps= 100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

                    Distance matrix (angstroms):
                    1          2          3          4          5
     1  C    0.000000
     2  C    1.522994   0.000000
     3  C    2.480147   1.514008   0.000000
     4  O    3.695105   2.351022   1.401993   0.000000
     5  H    1.112991   2.172042   3.452450   4.514564   0.000000
     6  H    1.112991   2.172042   2.727274   4.007645   1.812207
     7  H    1.112991   2.172042   2.727274   4.007645   1.812207
     8  H    2.164463   1.112991   2.156608   2.606883   2.504000
     9  H    2.164463   1.112991   2.156608   2.606883   2.504000
    10  H    2.754264   2.155110   1.110992   2.023629   3.763951
    11  H    2.754264   2.155110   1.110992   2.023629   3.763951
    12  H    8.405687   7.554123   6.067854   5.510155   9.468194
                    6          7          8          9         10
     6  H    0.000000
     7  H    1.810082   0.000000
     8  H    2.503256   3.092007   0.000000
     9  H    3.092007   2.503256   1.819928   0.000000
    10  H    3.135887   2.531498   3.077277   2.454730   0.000000
    11  H    2.531498   3.135887   2.454730   3.077277   1.892348
    12  H    8.304640   8.304640   7.903140   7.903140   5.902235
                   11         12
    11  H    0.000000
    12  H    5.902235   0.000000
Framework group  CS[SG(C3H2O),X(H6)]
Deg. of freedom    18
                         Standard orientation:                        
---------------------------------------------------------------------
Center     Atomic     Atomic              Coordinates (Angstroms)
Number     Number      Type              X           Y           Z
---------------------------------------------------------------------
    1          6             0        1.255278   -1.506926    0.000000
    2          6             0       -0.130991   -0.876236    0.000000
    3          6             0        0.000000    0.632094    0.000000
    4          8             0       -1.296548    1.165523    0.000000
    5          1             0        1.168664   -2.616542    0.000000
    6          1             0        1.818831   -1.187460    0.905041
    7          1             0        1.818831   -1.187460   -0.905041
    8          1             0       -0.684391   -1.199444    0.909964
    9          1             0       -0.684391   -1.199444   -0.909964
   10          1             0        0.480524    0.960964   -0.946174
   11          1             0        0.480524    0.960964    0.946174
   12          1             0       -0.771929    6.650647    0.000000
---------------------------------------------------------------------
Rotational constants (GHZ):     17.2064342      3.1832198      2.8410293
    76 basis functions,   144 primitive gaussians,    76 cartesian basis functions
    17 alpha electrons       17 beta electrons
       nuclear repulsion energy       124.8258882898 Hartrees.
NAtoms=   12 NActive=   12 NUniq=    9 SFac= 2.05D+00 NAtFMM=   60 Big=F
Harris functional with IExCor=  402 diagonalized for initial guess.
ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=1 IRadAn=         1 AccDes= 1.00D-06
HarFok:  IExCor= 402 AccDes= 1.00D-06 IRadAn=         1 IDoV=1
ScaDFX=  1.000000  1.000000  1.000000  1.000000
Initial guess orbital symmetries:
Alpha Orbitals:
       Occupied  (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')
                 (A') (A") (A') (A') (A") (A') (A")
       Virtual   (A') (A') (A') (A") (A') (A') (A") (A') (A') (A")
                 (A') (A') (A') (A') (A") (A') (A") (A') (A') (A")
                 (A') (A") (A') (A') (A") (A') (A') (A') (A") (A')
                 (A') (A") (A') (A") (A') (A') (A') (A') (A") (A")
                 (A') (A') (A") (A') (A') (A') (A") (A") (A') (A")
                 (A") (A') (A') (A') (A') (A') (A') (A') (A')
Beta  Orbitals:
       Occupied  (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')
                 (A') (A") (A') (A') (A") (A') (A")
       Virtual   (A') (A') (A') (A") (A') (A') (A") (A') (A') (A")
                 (A') (A') (A') (A') (A") (A') (A") (A') (A') (A")
                 (A') (A") (A') (A') (A") (A') (A') (A') (A") (A')
                 (A') (A") (A') (A") (A') (A') (A') (A') (A") (A")
                 (A') (A') (A") (A') (A') (A') (A") (A") (A') (A")
                 (A") (A') (A') (A') (A') (A') (A') (A') (A')
The electronic state of the initial guess is 1-A'.
of initial guess= 0.0000
Integral accuracy reduced to 1.0D-05 until final iterations.
EnCoef did     4 forward-backward iterations
EnCoef did   100 forward-backward iterations
EnCoef did    47 forward-backward iterations
EnCoef did   100 forward-backward iterations
EnCoef did   100 forward-backward iterations
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Rare condition: small coef for last iteration:  0.000D+00
Rare condition: small coef for last iteration:  0.000D+00
Rare condition: small coef for last iteration:  0.000D+00
Initial convergence to 1.0D-05 achieved.  Increase integral accuracy.
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.531D-16
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.336D-14
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.726D-16
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.107D-15
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Restarting incremental Fock formation.
EnCoef did   100 forward-backward iterations
Matrix for removal  2 Erem= -189.649073495462     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.205D-14
Matrix for removal  1 Erem= -193.662783371595     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669616784634     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.544D-16
Matrix for removal  5 Erem= -193.669660277609     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 11 Erem= -193.669674676639     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal  6 Erem= -193.680708294426     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 17 Erem= -193.680796533944     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 11 Erem= -193.680991473812     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.183D-14
Matrix for removal  7 Erem= -193.682256594040     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.148D-15
Matrix for removal 19 Erem= -193.669090757487     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 16 Erem= -193.682315012981     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681070405743     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 11 Erem= -193.682445461452     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.392D-14
Matrix for removal  8 Erem= -193.682520758481     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.747D-16
Matrix for removal 19 Erem= -193.669312116675     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.792D-16
Matrix for removal 18 Erem= -193.682543516463     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.151D-15
Matrix for removal 19 Erem= -193.681095470997     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 15 Erem= -193.682552843683     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.245D-15
Matrix for removal 19 Erem= -193.682545274202     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315341561     Crem= 0.000D+00
Restarting incremental Fock formation.
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 11 Erem= -193.682624807937     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095499744     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 10 Erem= -193.682632692601     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.147D-14
Matrix for removal 19 Erem= -193.682545073726     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326261     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 12 Erem= -193.682730571821     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095503067     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal  7 Erem= -193.682773565962     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.208D-14
Matrix for removal 19 Erem= -193.682545076777     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326400     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 14 Erem= -193.683017235743     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.755D-16
Matrix for removal 19 Erem= -193.681095502262     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 17 Erem= -193.683017442524     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.196D-14
Matrix for removal 19 Erem= -193.682545075003     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315327512     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017443717     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095504115     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 15 Erem= -193.683017446468     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.123D-14
Matrix for removal 19 Erem= -193.682545079680     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315322601     Crem= 0.000D+00
Restarting incremental Fock formation.
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.792D-16
Matrix for removal 18 Erem= -193.683017437126     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095502324     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 12 Erem= -193.683024425332     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.123D-14
Matrix for removal 19 Erem= -193.682545076679     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326392     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017442796     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095502854     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal  8 Erem= -193.683142013808     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.368D-15
Matrix for removal 19 Erem= -193.682545077287     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315325818     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.792D-16
Matrix for removal 18 Erem= -193.683017442052     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.755D-16
Matrix for removal 19 Erem= -193.681095502647     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal  9 Erem= -193.683308296148     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.123D-15
Matrix for removal 19 Erem= -193.682545076750     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315327153     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017442735     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095500338     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal  6 Erem= -193.683379639779     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.380D-14
Matrix for removal 19 Erem= -193.682545075134     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315329385     Crem= 0.000D+00
Restarting incremental Fock formation.
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017444378     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095502646     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal  2 Erem= -193.683486014923     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.613D-15
Matrix for removal 19 Erem= -193.682545076817     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326359     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017442586     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.151D-15
Matrix for removal 19 Erem= -193.681095502935     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 17 Erem= -193.686832550865     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.270D-14
Matrix for removal 19 Erem= -193.682545076723     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326622     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.158D-15
Matrix for removal 18 Erem= -193.683017442769     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095503575     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 16 Erem= -193.686832552246     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.490D-15
Matrix for removal 19 Erem= -193.682545077760     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315325553     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.158D-15
Matrix for removal 18 Erem= -193.683017441562     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095501770     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 17 Erem= -193.686832552421     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.172D-14
Matrix for removal 19 Erem= -193.682545074871     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315329038     Crem= 0.000D+00
Restarting incremental Fock formation.
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017445622     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.681095503371     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 12 Erem= -193.686832552514     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.515D-14
Matrix for removal 19 Erem= -193.682545076946     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326397     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 18 Erem= -193.683017442312     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration: -0.151D-15
Matrix for removal 19 Erem= -193.681095502870     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Matrix for removal 17 Erem= -193.686832551825     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.490D-15
Matrix for removal 19 Erem= -193.682545076492     Crem= 0.000D+00
EnCoef did   100 forward-backward iterations
Rare condition: small coef for last iteration:  0.000D+00
Matrix for removal 19 Erem= -193.669315326827     Crem= 0.000D+00
>>>>>>>>>> Convergence criterion not met.
SCF Done:  E(UB+HF-LYP) =  -193.686832552     A.U. after  129 cycles
             Convg  =    0.1730D-03             -V/T =  1.9975
             S**2   =   0.0000
Annihilation of the first spin contaminant:
S**2 before annihilation     0.0000,   after     0.0000
Convergence failure -- run terminated.
Error termination via Lnk1e in f:\GW03\l502.exe at Thu Sep 13 18:43:20 2012.
Job cpu time:  0 days  0 hours  3 minutes  7.0 seconds.
File lengths (MBytes):  RWF=     16 Int=      0 D2E=      0 Chk=      1 Scr=      1
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : 6-31g(ziyouji).out
  • 2012-09-13 18:48:08, 31.38 K

» 猜你喜欢

DAYDAYUP!!
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

智能机器人

Robot (super robot)

我们都爱小木虫

找到一些相关的精华帖子,希望有用哦~

科研从小木虫开始,人人为我,我为人人
相关版块跳转 我要订阅楼主 天堂地狱之间 的主题更新
信息提示
请填处理意见