| 查看: 1051 | 回复: 3 | ||
| 当前主题已经存档。 | ||
[交流]
纳米界小牛之一:Shouheng Sun - 磁性纳米颗粒合成
|
||
|
Shouheng Sun Associate Professor: Chemistry, Engineering & Diagnostic Imaging Phone: 401 863 3329 ssun@brown.edu My research interests are in nanomaterials synthesis, self-assembly and applications in biomedicine, catalysis, information storage, and composite nanostructures. Biography Education Ph.D., Chemistry, Brown University, Providence, RI, 1996. M.Sc., Chemistry, Nanjing University, Nanjing, China, 1987 B.Sc., Chemistry, Sichuan University, Chengdu, China, 1984 Professional Positions Associate Professor of Chemistry and Engineering, Jan. 2005 – Department of Chemistry, Brown University, Providence, RI 02912 Research Staff Member, June 1998 - 2004 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 Postdoctoral Fellow, July 1996 - May 1998 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 Lecturer, 1987 - 1992 Coordination Chemistry Institute/Department of Chemistry, Nanjing University, China Interests Our research in nanomaterials involves two related areas: (1) chemical synthesis and self-assembly of nanoparticles; (2) construction and elaboration of functional nanoparticles and their assemblies for applications in biomedicine, catalysis, information storage, and composite nanostructures. Synthesis and Self-Assembly We utilize the so called "bottom-up" approach for the synthesis of monodisperse nanoparticles. Recent focus has been on the synthesis of magnetic nanoparticles of Co, MFe2O4 and FePt by reduction of metal salts and/or thermal decomposition of organometallic precursors. The size, composition, and shape of these nanoparticles can be tuned by controlling reaction parameters, such as the reactant ratio and concentrations, temperature, and time. We are also exploring other synthetic approaches to prepare multi-component and multi-functional nanoparticles of the alloy-type (e.g. CoFe), core/shell type (e.g. CoFe/Fe3O4), and dumbbell-like (e.g. Au-Fe3O4) materials. Through proper surface modification, these nanoparticles can be dispersed in various media, or they can self-assemble into superlattice structures. The effects of particle size, shape, composition, and interparticle spacing on physical and chemical properties of the nanostructures constitute issues of the critical importance that are addressed by our research. Magnetic Nanoparticles for Biomedical Applications Recent advances in the synthetic control of nanoparticle monodispersity suggest that the fabrication of nanoparticle-based bio-probes with ultra-high sensitivity should be possible. We are working to make a series of biocompatible superparamagnetic nanoparticles that show the maximum magnetic moment (M) under physiological conditions, and subsequently establish their bio-recognition capabilities. Through collaborations with other researchers, we plan to integrate the functionalized nanoparticles into bio-systems for potential highly sensitive detection, separation, and imaging applications. Nanoparticles for Catalytic Applications The rapid progress in the construction of nanoparticles with controllable nanometer-sized features and electronic properties has made it possible to rationally design and synthesize nanoparticle-based catalysts. The surface chemistry, and therefore the catalytic properties, of a nanoparticle can be controlled by tuning the size, composition, and shape of the nanoparticle. Our goals are to design and synthesize a series of transition metal based nanoparticles and to study their self-assembled structures for catalytic applications in nanotube/nanowire formation and fuel-cell reaction. Magnetic Nanoparticle Assembly for Information Storage As a magnet in nanometer scale, a magnetic nanoparticle can be used to support magnetization transition for information storage applications. The ultimate media goal is that each nanomagnet can support one bit of the digital information. Self-assembly of ferromagnetic nanoparticles appears to offer a suitable approach to achieving this goal. We have tested and will continue to explore the chemical synthesis and fabrication of 2-dimensional nanostructures which permit control of the magnetic properties and magnetization direction of each nanoparticle for future ultrahigh density information storage at a density exceeding Tbits/in2. Composite Nanostructures via Nanoparticle Self-Assembly Nanocomposites refer to engineered materials consisting of at least one nanoscale constituent. By independently tuning the size and composition of each component, followed by engineering the assembly, the nanostructures can be tailored for physical and chemcial properties that do not exist in the single component nanomaterials. The self-assembly approach is being used to prepare multi-component systems to provide both a model for studying fundamental relationships between nanostructure and inter-particle interactions, and to provide a practical route to novel functional nanodevices. Degrees Ph. D. Awards Tenured, Brown University (2005) Outstanding Technical Achievement Award (IBM, 2003) Master Inventor (IBM, 2002) Scientific Accomplishment Award (IBM, 2000) IBM Employee Award (IBM, 2000) Potter Prize (Ph.D. Thesis), Brown University, 1997 Sigma Xi Award, Brown University, 1996 Institution Brown University Affiliations Member of American Association for the Advancement of Science Member of American Chemical Society Member of American Physical Society Member of Materials Research Society Teaching Chem 50 - Modern Inorganic Chemistry: Chemistry of elements; Coordination Chemistry; Organometallic Chemistry Chem 106 - Solid State Chemistry: Materials structures, properties and applications. Chem 170 - NanoMaterials: Chemical synthesis and self-assembly; Nanooptics; Nanoelectronics; Nanomagnetism; Nanoparticle catalysis; Special nanostructures in Nanotubes and Nanowires; Porous nanostructures; Nano-Biomedicine. Funded Research NSF/DMR (PI): "Dumbbell nanocomposites: Controlled chemical synthesis and catalytic applicaitons"; 06/01/06 - 06/01/09. INSIC (PI): "Shape controlled synthesis and self-assembly of FePt nanocrystals"; 08/01/06 -. ONR/MURI (co-PI): "Synthesis and Processing of Nanocompoiste Permanent Magnets - Approaches from the Bottom"; 5/1/05 - 4/30/08. NERCE/NIH (co-PI): "Detection of Anthrax Infection by Magnetic Reporting of Molecular Sensors"; 3/1/06 - 2/28/07 DARPA/ONR (co-PI): "An Integrated High Sensitivity DNA Fragment Identification System Based on Magnetc Nanoparticles for Use in Biological Warfare and Functional Genomics"; 1/1/05 - 9/30/06 PRF/ACS (co-PI): "Self-Assembly of Metallic Nanoparticles Mediated by Metal-Organometallic Coordination Networks (MOMNs)"; 6/1/06 - 8/31/08 Hitachi Maxwell Ltd. Scholarship: "Composite Catalysts for Fuel Cell". 05/01/05 - Brown University Salomon award (PI): "Surface modification of magnetic dumbbell nanoparticles for highly sensitve tumor cell detection"; 1/1/06 - 12/31/06 Brown University Department of Chemistry - Frontier Research award (PI): "Surface modification of magnetic nanoparticles for biomedical applications"; 1/1/06 - 12/31/06 [ Last edited by xiusi on 2007-5-25 at 05:53 ] |
|
86. H. Zeng, C. T. Black, R. L. Sandstrom, C. B. Murray, S. Sun, “Magneto-transport of magnetite nanoparticle arrays”, Phys. Rev. B 2006, in press. 85. G. Li, S. Sun, D. B. Robinson, R. J. Wilson, R. L. White, N. Pourmand, S. X. Wang, “Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications”, Sensors and Actuators A, 2006, in press. 84. S. Sun, “Recent advance in chemical synthesis, assembly and applications of FePt nanoparticles” (invited), Adv. Mater. 2006, in press. 83. T. Thomson, S. L. Lee, M. F. Toney, C. D. Dewhurst, F. Y. Ogrin, C. J. Oates, S. Sun, B. D. Terris, “Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction”, Phys. Rev. B 2005, 72, 64441. 82. Y. Li, Q. Zhang, A. N. Nurmikko, S. Sun, “Enhanced magneto-optical response in dumbbell like Ag-CoFe2O4 nanoparticle pairs”, Nano Lett. 2005, 5, 1689. 81. J. A. Reingold, K. L. Virkaitis, G. B. Carpenter, S. Sun, D. A. Sweigart, P. T. Czech, K. R. Overly, “Chemical and electrochemical reduction of polyarene manganese tricarbonyl cations: hapticity changes and generation of syn-and anti-facial bimetallic 4,6-naphthalene complexes”, J. Am. Chem. Soc. 2005, 127, 11146. 80. S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O’Brien, C. B. Murray, J. R. Kirtley, G. A. Held, “Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor”, J. Phys. Chem. B 2005, 109, 13030. 79. S. X. Wang, S.-Y. Bae, G. Li, S. Sun, R. L. White, J. T. Kemp, C. D. Webb, “Towards a magnetic mricroarray for sensitive diagnostics”, J. Magn. Magn. Mater. 2005, 293, 731. 78. D. B. Robinson, H. H. J. Persson, H. Zeng, G. Li, N. Pourmand, S. Sun, S. X. Wang, “DNA-functionalized MFe2O4 (M = Fe, Co, Mn) anoparticles and their hybridization to DNA-functionalized surfaces”, Langmuir 2005, 21, 3096. 77. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles”, Nano Lett. 2005, 5, 379. 76. J. B. Kortright, O. Hellwig, K. Chesnel, S. Sun, E. E. Fullerton, “Interparticle magnetic correlations in self-assembled Co nanoparticles”, Phys. Rev. B 2005, 71, 12402. 75. H. Zeng, P. M. Rice, S. X. Wang, S. Sun, “Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles”, J. Am. Chem. Soc. 2004, 126, 11458. 74. J. Li, H. Zeng, S. Sun. J. P. Liu, Z. L. Wang, “ Analyzing the Structure of CoFe-Fe3O4 Core-Shell Nanoparticles by Electron Imaging and Diffraction”, J. Phys. Chem. B 2004, 108, 14005. 73. V. Joshi, G. Li, S. X. Wang, S. Sun, “Biochemical stability of components for use in a DNA detection system”, IEEE Trans. Magn. 2004, 40, 3012. 72. G. Li, S. Wang, S. Sun, “Model and experiment of detecting multiple magnetic nanoparticles as biomolecular labels by spin valve sensors”, IEEE Trans. Magn. 2004, 40, 3000. 71. H. Zeng, S. Sun, J. Li, Z. L. Wang, J. P. Liu, “Tailoring magnetic properties of core/shell nanoparticles”, Appl. Phys. Lett. 2004 , 85, 792. 70. T. Thomason, M. F. Toney, S. Raoux, S. L. Lee, S. Sun, C. B. Murray, B. D. Terris, “Structural and magnetic model of self-assembled FePt nanoparticle arrays”, J. Appl. Phys. 2004, 96, 1197. 69. M. Chen, J. P. Liu, S. Sun, “One-step synthesis of FePt nanoparticles with tunable size”, J. Am. Chem. Soc. 2004, 126, 8394. 68. T. Thomson, M. F. Toney, S. Raoux, J. E. E. Baglin, S. L. Lee, S. Sun, B. D. Terris, “Silicide formation and particle size growth in high temperature annealed, self-assembled FePt nanoparticles”, J. Appl. Phys. 2004, 95, 6738. 67. M. Ulmeanu, C. Antoniak, U. Wiedwald, M. Farle, Z. Frait, S. Sun, “Composition dependent ratio of orbital to spin magnetic moment in structurally disordered Fe xPt 1-x nanoparticles”, Phys. Rev. B 2004, 69, 54417. 66. G. A. Held, H. Zeng, S. Sun, “Magnetics of ultra-thin FePt nanoparticle films”, J.Appl. Phys. 2004, 95, 1481. 65. H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, “Bi-magnetic core/shell FePt/Fe3O4 nanoparticles”, Nano Lett. 2004, 4, 187. 64 S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, “Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles”, J. Am. Chem. Soc. 2004, 126, 273. 63. H. F. Hamann, S. I. Woods, S. Sun, “Direct thermal patterning of self-assembled nanoparticles”, Nano Lett. 2003, 3, 1643. 62. J. E. E. Baglin, S. Sun, A. J. Kellock, T. Thomson, M. F. Toney, B. D. Terris, C. B. Murray, “Ion Beam Stabilization of FePt Nanoparticle Arrays for Magnetic Storage Media”, Mat. Res. Soc. Symp. Proc., 2003 , 777, T6.5.1. 61. K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Z. L. Wang, Y. Ding, “Ultra-fine FePt nanoparticles prepared by chemically reduction method”, Nano Lett. 2003, 3, 1647. 60. H. Zeng, S. Sun, R. L. Sandstrom and C. B. Murray, “Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing”, J. Magn. Magn. Mater. 2003 , 266, 227. 59. J. Li, Z. L. Wang, H. Zeng, S. Sun, J. Liu, “Interface structures in the FePt/ Fe3Pt hard-soft Exchange-Coupled Magnetic Nanocomposites”, Appl. Phys. Lett. 2003, 82, 3743. 58. S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, B. D. Terris, “Controlled synthesis and assembly of FePt nanoparticles”, J. Phys. Chem. B 2003 , 107, 5419. 57. G. Li , V. Joshi , R. L White , S. X. Wang, J. T. Kemp , C. Webb , R. W. Davis, S. Sun, “ Detection of single micron-sized magnetic bead and magnetic nanoparticle using spin valve sensors for biological applications ”, J. Appl. Phys. 2003 , 93, 7557. 56. S. Anders, M. F. Toney, T. Thomson, J.-U. Thiele, and B. D. Terris, S. Sun, C. B. Murray, “X-ray Studies of Magnetic Nanoparticle Assemblies”, J. Appl. Phys. 2003 , 93, 7343. 55. T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, “Thermal stability of the annealed FePt nanoparticle assembly”, J. Appl. Phys. 2003 , 93, 7184. 54 . S. Anders, M. F. Toney, T. Thomson, R. F. Farrow, J.-U. Thiele, B. D. Terris , S. Sun, C. B. Murray, “X-ray absorption and diffraction studies of thin polymer/FePt nanoparticle assemblies”, J. Appl. Phys. 2003, 93, 6299. 53. X. X. Zhang, G. H. Wen, G. Xiao, S. Sun, “Magnetic relaxation of diluted and self-assembled cobalt nanocrystals”, J. Magn. Magn. Mater. 2003 , 261, 21. 52. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. Sun, “Exchanged-coupled nanocomposite magnets via nanoparticle self-assembly”, Nature 2002, 420, 395. 51. H. Zeng, J. Li, Z. L. Wang, P. Liu and S. Sun, “Interparticle interactions in annealed FePt nanoparticle assemblies”, IEEE Trans. Magn. 2002, 38, 2598. 50. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun and E. E. Fullerton, “Magnetic recording: advancing into the future”, J. Phys. D: Appl. Phys. 2002, 35, R157-R167. 49. S. Anders, S. Sun, C. B. Murray, C. T. Rettner, M. E. Best, T. Thomson, M. Albrecht, J.-U. Thiele, E. E. Fullerton, and B. D. Terris, “ Lithography and self-assembly for nanometer scale magnetism ”, Microelectronic Engineering 2002, 61/62, 569. 48. S. Sun, H. Zeng, “Size-controlled synthesis of magnetite nanoparticles”, J. Am. Chem. Soc. 2002, 124, 8204. 47. R. W. Chantrell, D. Weller, T. J. Klemmer, S. Sun, E. E. Fullerton, “A model of the magnetic properties of FePt granular media”, J. App. Phys. 2002, 91, 6866. 46. Z. R. Dai, S. Sun, Z. L. Wang, “Shape, multiply twins and surface structures of monodispersive FePt magnetic nanocrystals”, Surf. Sci. 2002, 505, 325. 45. H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, Z. R. Dai, Z. L. Wang, “Exchange-coupled FePt nanoparticle assembly”, Appl. Phys. Lett. 2002, 80, 2583. 44. S. Sun, S. Anders, H. Hamann, J.-U. Thiele, J. E. E. Baglin, T. Thomson, E. E. Fullerton, C. B. Murray, B. D. Terris, “Polymer mediated self-assembly of magnetic nanoparticles”, J. Am. Chem. Soc. 2002, 124, 2884. 43. K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, “A simple fabrication scheme for sub-10 nm electrode gaps using e-beam lithography”, Appl. Phys. Lett. 2002, 80, 865. 42. C. B. Murray, S. Sun, H. Doyle, T. Betley, “Monodisperse 3d Transition Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices”, MRS Bulletin 2001 , 26 , 985. 41. C. T. Black, C. B. Murray, R. L. Sandstrom, S. Sun, “Low-voltage electron transport in self-assembled nanocrystal arrays”, Mat. Res. Soc. Symp. Proc. 2001 , 636, D10.7.1. 40. S. Sun, E. E. Fullerton, D. Weller, C. B. Murray, “Compositionally controlled FePt nanoparticle materials”, IEEE Trans. Magn. 2001, 37, 1239. 39. D. Weller, S. Sun, C. B. Murray, L. Folks, A. Moser, “MOKE spectra and ultrahigh density data storage perspective of FePt nanomagnet arrays”, IEEE Trans. Magn. 2001, 37, 2185. 38. S. I. Woods, J. R. Kirtley, S. Sun, R. H. Koch, “Direct investigation of superparamagnetism in Co nanoparticle films”, Phys. Rev. Lett. 2001, 87, 137205. 37. Z. R. Dai, S. Sun, Z. L. Wang, “Phase transformation, coalescence and twinning of monodisperse FePt nanocrystals”, Nano Lett. 2001, 1, 443. 36. M. R. Diehl, J.-Y. Yu, J. R. Heath, G. A. Held, H. Doyle, S. Sun, C. B. Murray, “Ferromagnetic Resonance Study of Superparamagnetic Cobalt Nanoparticles”, J. Phys. Chem. B 2001 , 105 , 7913. 35. S. Sun, D. Weller, “Self-Assembling magnetic nanomaterials”, J. Magn. Soc. Jpn 2001, 25, 1434. 34. G. A. Held, G. Grinstein, H. Doyle, S. Sun, C. B. Murray, “Competing interactions in dispersions of superparamagnetic nanoparticles”, Phys. Rev. B 2001, 64, 12408. 33. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. Betley, C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices”, IBM J. Res. & Dev. 2001, 45, 47. 32. C. T. Black, C. B. Murray, R. L. Sandstrom, S. Sun, “Spin-dependent tunneling in self-assembled cobalt nanocrystal superlattices”, Science 2000, 290, 1131. 31. Z. L. Wang, D. R. Dai, S. Sun, “Polyhedral shapes of cobalt nanocrystals and their effect on ordered nanocrystal assembly”, Adv. Mater. 2000 12, 1944. 30.S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices”, Science 2000, 287, 1989. |
2楼2007-05-25 05:50:00
3楼2007-05-25 05:53:53













回复此楼
