24小时热门版块排行榜    

查看: 2476  |  回复: 35
【奖励】 本帖被评价17次,作者zhaokelun1975增加金币 16
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

zhaokelun1975

木虫 (著名写手)


[资源] 【精品推荐】纳米线及纳米管等一维纳米结构经典资源共享

纳米线经典研究文献综述:Charles Lieber’s Nanowires

介绍了Charles Lieber的12篇Science和Nature研究工作

纳米线经典研究文献综述:Charles Lieber’s Nanowires

介绍了Charles Lieber的12篇Science和Nature研究工作

Reference
1. A. M. Morales, C. M. Lieber, Science 279, 208 (1998).
2. H. Wang, G. S. Fischman, J. Appl. Phys 76 (3), 1557 (1994).
3. X. Duan, C. M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
4. X. Duan, J. Wang, C. M. Lieber, Appl. Phys. Lett. 76, 1116 (2000).
5. Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000).
6. X. Duan, C. M. Lieber, Adv. Mater. 12, 298 (2000).
7. J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Nature 399, 48 (1999).
8. M. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).
9. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002).
10. L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature 420, 57 (2002).
11. W. G. Moffatt, The Handbook of Binary Phase Diagrams (Genium, Schenectady, NY, 1976)
12. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (2001).
13. Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 291, 630 (2001).
14. Y. Cui, C. M. Lieber, Science 291, 851 (2001).
15. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science 294, 1313 (2001).
16. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber, Science 302, 1377 (2003).
17. X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2001).
18. J. Wang, M. S. Gudiksen, X. Feng, C. M. Lieber, Science 293, 1455 (2001).
19. X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature 421, 241 (2003).
20. D. Wang, F. Qian, C. Yang, Z. Zhong, C. M. Lieber, Nano Lett. 4(5), 871
(2004).


http://cmliris.harvard.edu/publications/1998/nature394_52.pdf
http://cmliris.harvard.edu/publications/1999/nature399_48.pdf
http://cmliris.harvard.edu/publications/2001/science294_1313.pdf
http://cmliris.harvard.edu/publications/2001/science293_1289.pdf
http://cmliris.harvard.edu/publications/2001/science291_851.pdf
http://cmliris.harvard.edu/publications/2001/science291_630.pdf
http://cmliris.harvard.edu/publications/2001/nature409_66.pdf
http://cmliris.harvard.edu/publications/2001/science293_1455.pdf
http://cmliris.harvard.edu/publications/2002/nature415_617.pdf
http://cmliris.harvard.edu/publications/2002/nature420_57.pdf
http://cmliris.harvard.edu/publications/2003/science302_1377.pdf
http://cmliris.harvard.edu/publications/2004/nature430_61.pdf
http://cmliris.harvard.edu/publications/2004/nanoLett4_871.pdf
http://cmliris.harvard.edu/publications/2000/aPL76_1116.pdf
http://cmliris.harvard.edu/publications/2000/advMat12_298.pdf
http://cmliris.harvard.edu/publications/2000/jACS122_188.pdf
http://cmliris.harvard.edu/publications/2000/jPCB104_5213.pdf
http://cmliris.harvard.edu/publications/2000/jACS122_8801.pdf

[ Last edited by 604gq on 2007-5-19 at 18:22 ]
回复此楼

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zxf984

至尊木虫 (文坛精英)


太好了!!!!
顶!!!
强烈支持!!!
12楼2007-06-14 11:20:12
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 36 个回答

zhaokelun1975

木虫 (著名写手)


Functional Nanowires
Charles M. Lieber and Zhong Lin Wang,
Guest Editors
Abstract
Nanotechnology offers the promise of enabling revolutionary advances in diverse areas ranging from electronics, optoelectronics, and energy to healthcare. Underpinning
the realization of such advances are the nanoscale materials and corresponding nanodevices central to these application areas. Semiconductor nanowires and nanobelts
are emerging as one of the most powerful and diverse classes of functional nanomaterials that are having an impact on science and technology. In this issue of MRS
Bulletin, several leaders in this vibrant field of research present brief reviews that highlight key aspects of the underlying materials science of nanowires, basic device
functions achievable with these materials, and developing applications in electronics and at the interface with biology. This article introduces the controlled synthesis,
patterned and designed self-assembly, and unique applications of nanowires in nanoelectronics, nano-optoelectronics, nanosensors, nanobiotechnology, and energy
harvesting.

http://www.nanoscience.gatech.edu/zlwang/paper/2007/07_MRSB_2.pdf
2楼2007-05-14 21:23:33
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zhaokelun1975

木虫 (著名写手)


Nanowire - Based Nanoelectronic Devices in the Life Sciences
Fernando Patolsky, Brian P. Timko,
Gengfeng Zheng, and Charles M. Lieber
Abstract
The interface between nanosystems and biosystems is emerging as one of the
broadest and most dynamic areas of science and technology, bringing together biology,
chemistry, physics, biotechnology, medicine, and many areas of engineering. The
combination of these diverse areas of research promises to yield revolutionary advances
in healthcare, medicine, and the life sciences through the creation of new and powerful
tools that enable direct, sensitive, and rapid analysis of biological and chemical species.
Devices based on nanowires have emerged as one of the most powerful and general
platforms for ultrasensitive, direct electrical detection of biological and chemical species
and for building functional interfaces to biological systems, including neurons. Here, we
discuss representative ex amples of nanowire nanosensors for ultrasensitive detection of
proteins and individual virus par ticles as well as recording, stimulation, and inhibition
of neuronal signals in nanowire–neuron hybrid structures.
http://cmliris.harvard.edu/publications/2007/MRS......Bull_32_142.pdf
3楼2007-05-14 21:24:59
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zhaokelun1975

木虫 (著名写手)


Semiconductor nanowires
Abstract
Semiconductor nanowires (NWs) represent a unique system for exploring phenomena at the nanoscale and are also expected to play a critical role in
future electronic and optoelectronic devices. Here we review recent
advances in growth, characterization, assembly and integration of
chemically synthesized, atomic scale semiconductor NWs. We first
introduce a general scheme based on a metal-cluster catalyzed
vapour–liquid–solid growth mechanism for the synthesis of a broad range of
NWs and nanowire heterostructures with precisely controlled chemical
composition and physical dimension. Such controlled growth in turn results
in controlled electrical and optical properties. Subsequently, we discuss
novel properties associated with these one-dimensional (1D) structures such
as discrete 1D subbands formation and Coulomb blockade effects as well as
ballistic transport and many-body phenomena. Room-temperature
high-performance electrical and optical devices will then be discussed at the
single- or few-nanowire level. We will then explore methods to assemble
and integrate NWs into large-scale functional circuits and real-world
applications, examples including high-performance DC/RF circuits and
flexible electronics. Prospects of a fundamentally different ‘bottom-up’
paradigm, in which functionalities are coded during growth and circuits are
formed via self-assembly, will also be briefly discussed.
Download link
http://cmliris.harvard.edu/publications/2006/JPhysDApplPhys_39_R387.pdf
4楼2007-05-14 21:27:45
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2007-05-16 08:32   回复  
 
liumiao50514楼
2007-06-20 00:34   回复  
感谢分享!!!!!!!!!!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见