| ²é¿´: 1052 | »Ø¸´: 4 | |||
| µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû | |||
xmch2011Ìú³æ (СÓÐÃûÆø)
|
[ÇóÖú]
Çófortran95±àдµÄÊýÖµ³ÌÐò
|
||
| ÏëѧѧÓÃfortran95дµÄÊýÖµ³ÌÐò£¬ÄÇλͬѧÓÐûÓÐÕâÑùµÄ³ÌÐò£¬Ñ§Ï°Ò»Ï£¬Ð»Ð»£¡ |
» ²ÂÄãϲ»¶
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ9È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ10È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:
ÇóÖú¼ÆËã»ú¸ßÈË£¬±àд¸öFortran³ÌÐò
ÒѾÓÐ13È˻ظ´
¡¾ÇóÖú¡¿ÇóÖúÓÃFortran±àдģÄâÖеĽӴ¥½Ç
ÒѾÓÐ4È˻ظ´
¡¾ÇóÖú¡¿ÈçºÎдFORTRAN³ÌÐòʵÏÖÇ󯽾ù×î½üÁÚ¾àÀë
ÒѾÓÐ34È˻ظ´
¡¾ÇóÖú¡¿ÓÃfortranÔõôÃèÊöÏÂÃæÕâÑùµÄÇé¿ö£¬ÎÒÊÇÐÂÊÖ£¬Çë´ó¼Ò°ïæ
ÒѾÓÐ8È˻ظ´
¡¾ÇóÖú¡¿ÓйØfortran½øÐÐÊýֵģÄâ
ÒѾÓÐ10È˻ظ´
¡¾ÇóÖú¡¿ÈçºÎʵÏÖ±àдµÄfortran³ÌÐòÈñðÈËʹÓ㬵«²»ÈñðÈËÖªµÀÔ´´úÂë
ÒѾÓÐ6È˻ظ´

wll778824
Òø³æ (СÓÐÃûÆø)
- Ó¦Öú: 2 (Ó×¶ùÔ°)
- ½ð±Ò: 1013.4
- É¢½ð: 242
- ºì»¨: 1
- Ìû×Ó: 273
- ÔÚÏß: 150.9Сʱ
- ³æºÅ: 917314
- ×¢²á: 2009-12-01
- רҵ: ¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËã
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï
СÓêÃÈÃÈ: ½ð±Ò+3, 3Q! 2012-04-05 16:33:56
СÓêÃÈÃÈ: ½ð±Ò+3, 3Q! 2012-04-05 16:33:56
|
subroutine AVERAGE use constant implicit double precision(a-h,o-z) common/u/ u(-1:n+2),uminus(0:n),uadd(0:n) common/flux/ flux(0:n) flux=0 do i=0,n flux(i)=0.5*(0.5*uminus(i)*uminus(i) &+0.5*uadd(i)*uadd(i)-0.6*(uadd(i)-uminus(i))) enddo do j=1,n u(j)=(flux(j-1)-flux(j))/h enddo end |
3Â¥2012-04-02 12:12:44
wll778824
Òø³æ (СÓÐÃûÆø)
- Ó¦Öú: 2 (Ó×¶ùÔ°)
- ½ð±Ò: 1013.4
- É¢½ð: 242
- ºì»¨: 1
- Ìû×Ó: 273
- ÔÚÏß: 150.9Сʱ
- ³æºÅ: 917314
- ×¢²á: 2009-12-01
- רҵ: ¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËã
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï ¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
СÓêÃÈÃÈ: ½ð±Ò+5, °ï·¢·Å½ð±Ò¿©~ 2012-04-05 16:34:13
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
СÓêÃÈÃÈ: ½ð±Ò+5, °ï·¢·Å½ð±Ò¿©~ 2012-04-05 16:34:13
|
¸øÄãÒ»¸öÓÐÏÞÌå»ýËã·¨Çó½âBurgers ·½³ÌµÄfortran³ÌÐò£¬Ô´´úÂëÓù̶¨¸ñʽдµÄ !Solve Burgers equation u_t+(u^2/2)_x=0 using Finite Volume Method !The time is discretized by using RK3 module constant implicit double precision(a-h,o-z) parameter pi=3.1415926,dt=0.001,nw=2000 parameter n=20,h=2.0*pi/dble(n),san=0.0 end module program FVM use constant implicit double precision(a-h,o-z) common u0(-1:n+2),u1(-1:n+2),u2(-1:n+2) common/u/ u(-1:n+2),uminus(0:n),uadd(0:n) !uminus=u^-,uadd=u^+ common/flux/ flux(0:n) common/ua/ ua1(n),ua2(n),state(n) common u3(-1:n+2) do j=1,n u0(j)=1.0/3.0+2.0/(3.0*h) &*(cos((dble(j-1))*h+san)-cos(dble(j)*h+san)) enddo u0(0)=u0(n) u0(-1)=u0(n-1) u0(n+1)=u0(1) u0(n+2)=u0(2) u=u0 call RECONS do ntime=1,nw call AVERAGE u1=0 u0(0)=0 u0(n+1)=0 u(0)=0 u(n+1)=0 u1=u0+dt*u u=u1 u(0)=u(n) u(-1)=u(n-1) u(n+1)=u(1) u(n+2)=u(2) call RECONS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! call AVERAGE u2=0 u0(0)=0 u0(n+1)=0 u1(0)=0 u1(n+1)=0 u(0)=0 u(n+1)=0 u2=0.75*u0+0.25*u1+0.25*dt*u u=u2 u(0)=u(n) u(-1)=u(n-1) u(n+1)=u(1) u(n+2)=u(2) call RECONS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! call AVERAGE u3=0 u0(0)=0 u0(n+1)=0 u2(0)=0 u2(n+1)=0 u(0)=0 u(n+1)=0 u3=(u0+2.0*u2+2.0*dt*u)/3.0 u=u3 u(0)=u(n) u(-1)=u(n-1) u(n+1)=u(1) u(n+2)=u(2) u0=u call RECONS write(*,*)ntime if(ntime==1400)then open(11,file='1.4uadd.dat') do i=0,n write(11,'(2f15.6)')san+dble(i)*h,uadd(i) enddo open(12,file='1.4uminus.dat') do i=0,n write(12,'(2f15.6)')san+dble(i)*h,uminus(i) enddo elseif(ntime==1500)then open(13,file='1.5uadd.dat') do i=0,n write(13,'(2f15.6)')san+dble(i)*h,uadd(i) enddo open(14,file='1.5uminus.dat') do i=0,n write(14,'(2f15.6)')san+dble(i)*h,uminus(i) enddo elseif(ntime==2000)then open(15,file='2uadd.dat') do i=0,n write(15,'(2f15.6)')san+dble(i)*h,uadd(i) enddo open(16,file='2uminus.dat') do i=0,n write(16,'(2f15.6)')san+dble(i)*h,uminus(i) enddo elseif(ntime==1000)then open(17,file='1uadd.dat') do i=0,n write(17,'(2f15.6)')san+dble(i)*h,uadd(i) enddo open(18,file='1uminus.dat') do i=0,n write(18,'(2f15.6)')san+dble(i)*h,uminus(i) enddo endif enddo !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! end ÒÔÉÏΪÖ÷³ÌÐò£¬ÒÔÏÂΪ×Ó³ÌÐò |
2Â¥2012-04-02 12:12:10
wll778824
Òø³æ (СÓÐÃûÆø)
- Ó¦Öú: 2 (Ó×¶ùÔ°)
- ½ð±Ò: 1013.4
- É¢½ð: 242
- ºì»¨: 1
- Ìû×Ó: 273
- ÔÚÏß: 150.9Сʱ
- ³æºÅ: 917314
- ×¢²á: 2009-12-01
- רҵ: ¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËã
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï
СÓêÃÈÃÈ: ½ð±Ò+3, 3Q! 2012-04-05 16:33:44
СÓêÃÈÃÈ: ½ð±Ò+3, 3Q! 2012-04-05 16:33:44
|
subroutine RECONS use constant implicit double precision(a-h,o-z) common/u/ u(-1:n+2),uminus(0:n),uadd(0:n) common/flux/ flux(0:n) uminus=0 uadd=0 do j=0,n uminus(j)=-1.0/6.0*u(j-1)+5.0/6.0*u(j)+1.0/3.0*u(j+1) enddo do j=0,n uadd(j)=1.0/3.0*u(j)+5.0/6.0*u(j+1)-1.0/6.0*u(j+2) enddo end |
4Â¥2012-04-02 12:13:01
xmch2011
Ìú³æ (СÓÐÃûÆø)
- Ó¦Öú: 0 (Ó×¶ùÔ°)
- ½ð±Ò: 184
- É¢½ð: 10
- Ìû×Ó: 75
- ÔÚÏß: 45.2Сʱ
- ³æºÅ: 1264781
- ×¢²á: 2011-04-13
- ÐÔ±ð: GG
- רҵ: ¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËã

5Â¥2012-04-03 11:35:00













»Ø¸´´ËÂ¥