24小时热门版块排行榜    

查看: 214  |  回复: 0
当前主题已经存档。

zhangjs

铁杆木虫 (职业作家)


[资源] Lectures on Classical Differential Geometry

Lectures on Classical Differential Geometry

Contents

Foreword 9


I Curves 11

1 Space curves 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Parameterized curves (paths) . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 The definition of the curve . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Analytical representations of curves . . . . . . . . . . . . . . . . . . . 26
1.4.1 Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Space curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 The tangent and the normal plane . . . . . . . . . . . . . . . . . . . . . 32
1.5.1 The equations of the tangent line and normal plane (line) for different representations of curves . . . . . . . . . . . . . . . . 35
1.6 The osculating plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.7 The curvature of a curve . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.7.1 The geometrical meaning of curvature . . . . . . . . . . . . . . 44
1.8 The Frenet frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.8.1 The behaviour of the Frenet frame at a parameter change . . . . 47
1.9 Oriented curves. The Frenet frame of an oriented curve . . . . . . . . . 48
1.10 The Frenet formulae. The torsion . . . . . . . . . . . . . . . . . . . . . 50
1.10.1 The geometrical meaning of the torsion . . . . . . . . . . . . . 53
1.10.2 Some further applications of the Frenet formulae . . . . . . . . 54
1.10.3 General helices. Lancret’s theorem . . . . . . . . . . . . . . . 56
1.10.4 Bertrand curves . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.11 The local behaviour of a parameterized curve around a biregular point . 62
1.12 The contact between a space curve and a plane . . . . . . . . . . . . . 64
1.13 The contact between a space curve and a sphere. The osculating sphere 66
1.14 Existence and uniqueness theorems for parameterized curves . . . . . . 68
1.14.1 The behaviour of the Frenet frame under a rigid motion . . . . . 68
1.14.2 The uniqueness theorem . . . . . . . . . . . . . . . . . . . . . 70
1.14.3 The existence theorem . . . . . . . . . . . . . . . . . . . . . . 72

2 Plane curves 75

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2 Envelopes of plane curves . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2.1 Curves given through an implicit equation . . . . . . . . . . . . 77
2.2.2 Families of curves depending on two parameters . . . . . . . . 79
2.2.3 Applications: the evolute of a plane curve . . . . . . . . . . . . 79
2.3 The curvature of a plane curve . . . . . . . . . . . . . . . . . . . . . . 81
2.3.1 The geometrical interpretation of the signed curvature . . . . . 84
2.4 The curvature center. The evolute and the involute of a plane curve . . . 86
2.5 The osculating circle of a curve . . . . . . . . . . . . . . . . . . . . . . 91
2.6 The existence and uniqueness theorem for plane curves . . . . . . . . . 92


3 The integration of the natural equations of a curve 95

3.1 The Riccati equation associated to the natural equations of a curve . . . 95
3.2 Examples for the integration of the natural equation of a plane curve . . 96

Problems 103


II Surfaces 113

4 General theory of surfaces 115

4.1 Parameterized surfaces (patches) . . . . . . . . . . . . . . . . . . . . . 115
4.2 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.1 Representations of surfaces . . . . . . . . . . . . . . . . . . . . 116
4.3 The equivalence of local parameterizations . . . . . . . . . . . . . . . . 119
4.4 Curves on a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5 The tangent vector space, the tangent plane and the normal to a surface . 123
4.6 The orientation of surfaces . . . . . . . . . . . . . . . . . . . . . . . . 127
4.7 Differentiable maps on a surface . . . . . . . . . . . . . . . . . . . . . 130
4.8 The differential of a smooth map between surfaces . . . . . . . . . . . 134
4.9 The spherical map and the shape operator of an oriented surface . . . . 136
4.10 The first fundamental form of a surface . . . . . . . . . . . . . . . . . 139
4.10.1 First applications . . . . . . . . . . . . . . . . . . . . . . . . . 140
            The length of a segment of curve on a surface . . . . . . . . . . 140
            The angle of two curves on a surface . . . . . . . . . . . . . . . 141
            The area of a parameterized surface . . . . . . . . . . . . . . . 142
4.11 The matrix of the shape operator . . . . . . . . . . . . . . . . . . . . . 144
4.12 The second fundamental form of an oriented surface . . . . . . . . . . 146
4.13 The normal curvature. The Meusnier’s theorem . . . . . . . . . . . . . 148
4.14 Asymptotic directions and asymptotic lines on a surface . . . . . . . . . 150
4.15 The classification of points on a surface . . . . . . . . . . . . . . . . . 152
4.16 Principal directions and curvatures . . . . . . . . . . . . . . . . . . . . 156
4.16.1 The determination of the lines of curvature . . . . . . . . . . . 159
4.16.2 The computation of the curvatures of a surface . . . . . . . . . 161
4.17 The fundamental equations of a surface . . . . . . . . . . . . . . . . . 162
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.17.2 The differentiation rules. Christoffel’s coefficients . . . . . . . . 162
            Christoffel’s andWeingarten’s coefficients in curvature coordinates...164
4.17.3 The Gauss’ and Codazzi-Mainardi’s equations for a surface . . 165
4.17.4 The fundamental theorem of surface theory . . . . . . . . . . . 167
4.18 The Gauss’ egregium theorem . . . . . . . . . . . . . . . . . . . . . . 172
4.19 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.19.2 The Darboux frame. The geodesic curvature and geodesic torsion 175
4.19.3 Geodesic lines . . . . . . . . . . . . . . . . . . . . . . . . . . 180
             Examples of geodesics . . . . . . . . . . . . . . . . . . . . . . 181
4.19.4 Liouville surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 182

5 Special classes of surfaces 185

5.1 Ruled surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.1.1 General ruled surfaces . . . . . . . . . . . . . . . . . . . . . . 185
         The parameterization of a ruled surface . . . . . . . . . . . . . 186
         The tangent plane and the first fundamental form of a ruled surface187
5.1.2 The Gaussian curvature of a ruled surface . . . . . . . . . . . . 189
5.1.3 Envelope of a family of surfaces . . . . . . . . . . . . . . . . . 190
5.1.4 Developable surfaces . . . . . . . . . . . . . . . . . . . . . . . 191
          Developable surfaces as envelopes of a one-parameter family of planes.The regression edge of a   developable surface ....193

5.1.5 Developable surfaces associated to the Frenet frame of a space curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
           The envelope of the family of osculating planes . . . . . . . . . 197
           The envelope of the family of normal planes (the polar surface) 198
           The envelope of the family of rectifying planes of a space curves 199
5.2 Minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.2.1 Definition and general properties . . . . . . . . . . . . . . . . . 200
5.2.2 Minimal surfaces of revolution . . . . . . . . . . . . . . . . . . 206
5.2.3 Ruled minimal surfaces . . . . . . . . . . . . . . . . . . . . . . 207
5.3 Surfaces of constant curvature . . . . . . . . . . . . . . . . . . . . . . 213

Problems 217

Bibliography 229

Index 233



[url][/url]

[ Last edited by mainpro on 2007-3-27 at 00:25 ]
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 zhangjs 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见