| 查看: 3004 | 回复: 5 | ||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||
[求助]
molpro试做旋轨耦合,怎么在输出中找omega及其对应的能量
|
||||
|
试做CO-(一氧化碳负离子),输入输出文件如下,请高手指点,怎么找omega态及其对应的能量啊?刚学,求指点,不甚感激! 输入文件如下: ***,NO molecule memory,900,m geometry={angstrom; O; C,O,r} r=1.1069 Ang {hf occ,5,2,1,0 wf,15,2,1 open,2.2} {multi; closed,2;occ,6,2,2,0; wf,15,2,1; wf,15,3,1; wf,15,1,1; } {ci;core;closed,2;occ,6,2,2,0;wf,15,2,1;save,6000.2;} {ci;core;closed,2;occ,6,2,2,0;wf,15,3,1;save,6100.2;} {ci;core;closed,2;occ,6,2,2,0;wf,15,1,1;save,6200.2;} text,spin-obrital calculation {ci;hlsmat,ls,6000.2,6100.2,6200.2;print,HLS=2,VLS=0;} SOC输出如下: *** spin-obrital calculation Reading current basis input from record 610.1 1PROGRAM * CI (Multireference internally contracted CI) Authors: H.-J. Werner, P.J. Knowles, 1987 ****************************** *** Spin-orbit calculation *** ****************************** Spin-orbit matrix elements ========================== Reading current basis input from record 610.1 1PROGRAM * SEWLS (Spin-orbit & spin-spin integral evaluation) Modified from original SEWARD code by Alexander Mitrushchenkov Original version: December 2001, 2D-derivatives modifications: Stuttgart 2004 The following spin-orbit components are calculated: Operator Symmetry LSX 3 LSY 2 LSZ 4 Integral cutoff: 0.10E-06 Time for Seward_LS: 2.78 sec 94596. SPIN-ORBIT INTEGRALS WRITTEN OUT IN 25 RECORDS ON RECORD 11290 OF FILE 1 CPU time: 2.78 sec, REAL time: 2.86 sec SORTLS1 read 94596. and wrote 94596. SO integrals in 3 records. CPU time: 0.01 sec, REAL time: 0.01 sec SORTLS2 read 94596. and wrote 119808. SO integrals in 3 records. CPU time: 0.00 sec, REAL time: 0.00 sec FILE SIZES: FILE 1: 4.2 MBYTE, FILE 4: 12.6 MBYTE, TOTAL: 16.8 MBYTE Preparing effective Fock matrices Reading current basis input from record 610.1 Total X Y Z Fock matrices evaluated: 3 3 3 Wavefunction restored from record 6000.2 Symmetry=2 S=0.5 NSTATE=1 !MRCI overlap <1.2||1.2> 1.000000000000 !MRCI expec <1.2|DMZ|1.2> -0.921425708798 au = -2.341877152968 Debye Wavefunction restored from record 6100.2 Symmetry=3 S=0.5 NSTATE=1 !MRCI overlap <1.3||1.3> 1.000000000000 !MRCI expec <1.3|DMZ|1.3> -0.921429142333 au = -2.341885879572 Debye Wavefunction restored from record 6200.2 Symmetry=1 S=0.5 NSTATE=1 !MRCI trans <1.2|DMX|1.1> 0.127371280622 au = 0.323724299404 Debye Bra-wavefunction restored from record 6100.2 Ket-wavefunction restored from record 6200.2 Symmetry of spin-orbit operator: 3 Symmetry of bra wavefunction: 3 S=0.5 MS=-0.5 Symmetry of ket wavefunction: 1 S=0.5 MS= 0.5 !MRCI LS_I-I(FC) tra <1.3|LSX|1.1> -0.000001520375i au = -0.333683699224i cm-1 !MRCI LS_I-I(FV) tra <1.3|LSX|1.1> 0.000007667671i au = 1.682859173752i cm-1 !MRCI LS_I-I(TOT) tr <1.3|LSX|1.1> 0.000007984383i au = 1.752369454246i cm-1 Spin-orbit matrix elements for mean field operator: !MRCI trans <1.3|LSX|1.1> 0.000003987589i au = 0.875174530780i cm-1 Spin-orbit matrix elements using full Breit-Pauli operator for internal part: !MRCI trans <1.3|LSX|1.1> 0.000004283887i au = 0.940204469203i cm-1 !MRCI trans <1.3|DMY|1.1> 0.127371742609 au = 0.323725473580 Debye !MRCI overlap <1.1||1.1> 1.000000000000 !MRCI expec <1.1|DMZ|1.1> -0.999518209749 au = -2.540355491534 Debye Bra-wavefunction restored from record 6000.2 Ket-wavefunction restored from record 6200.2 Symmetry of spin-orbit operator: 2 Symmetry of bra wavefunction: 2 S=0.5 MS=-0.5 Symmetry of ket wavefunction: 1 S=0.5 MS= 0.5 !MRCI LS_I-I(FC) tra <1.2|LSY|1.1> -0.000001520444 au = -0.333698818893 cm-1 !MRCI LS_I-I(FV) tra <1.2|LSY|1.1> 0.000007667629 au = 1.682850113598 cm-1 !MRCI LS_I-I(TOT) tr <1.2|LSY|1.1> 0.000007984339 au = 1.752359866009 cm-1 Spin-orbit matrix elements for mean field operator: !MRCI trans <1.2|LSY|1.1> 0.000003987560 au = 0.875168332718 cm-1 Spin-orbit matrix elements using full Breit-Pauli operator for internal part: !MRCI trans <1.2|LSY|1.1> 0.000004283856 au = 0.940197776243 cm-1 Bra-wavefunction restored from record 6000.2 Ket-wavefunction restored from record 6100.2 Symmetry of spin-orbit operator: 4 Symmetry of bra wavefunction: 2 S=0.5 MS= 0.5 Symmetry of ket wavefunction: 3 S=0.5 MS= 0.5 !MRCI LS_I-I(FC) tra <1.2|LSZ|1.3> -0.000264927219i au = -58.144803483225i cm-1 !MRCI LS_I-I(FV) tra <1.2|LSZ|1.3> -0.000154775533i au = -33.969302985216i cm-1 !MRCI LS_I-I(TOT) tr <1.2|LSZ|1.3> -0.000154242867i au = -33.852396194400i cm-1 Spin-orbit matrix elements for mean field operator: !MRCI trans <1.2|LSZ|1.3> -0.000141208598i au = -30.991704873954i cm-1 Spin-orbit matrix elements using full Breit-Pauli operator for internal part: !MRCI trans <1.2|LSZ|1.3> -0.000140709950i au = -30.882264331728i cm-1 Property matrices in the basis of the zeroth-order wave-functions ================================================================= Property matrix for the DMX operator Nr Nr' State S 1 2 3 1 1 1.2 0.5 0.000000 0.000000 0.127371 2 3 1.3 0.5 0.000000 0.000000 0.000000 3 5 1.1 0.5 0.127371 0.000000 0.000000 Property matrix for the DMY operator Nr Nr' State S 1 2 3 1 1 1.2 0.5 0.000000 0.000000 0.000000 2 3 1.3 0.5 0.000000 0.000000 0.127372 3 5 1.1 0.5 0.000000 0.127372 0.000000 Property matrix for the DMZ operator Nr Nr' State S 1 2 3 1 1 1.2 0.5 -0.921426 0.000000 0.000000 2 3 1.3 0.5 0.000000 -0.921429 0.000000 3 5 1.1 0.5 0.000000 0.000000 -0.999518 Spin-orbit calculation in the basis of zeroth order wave functions ================================================================== Lowest unperturbed energy E0= -112.89635056 Wigner-Eckart theorem used for 3 matrix elements No symmetry adapted basis set used to set up the SO-matrix Spin-Orbit Matrix (CM-1) ======================== Nr State S SZ 1 2 3 4 5 6 1 1.2 0.5 0.5 0.00 0.00 0.00 0.00 0.00 -0.94 -0.00 0.00 -30.88 0.00 0.00 0.00 2 1.2 0.5 -0.5 0.00 0.00 0.00 0.00 0.94 0.00 -0.00 -0.00 0.00 30.88 0.00 0.00 3 1.3 0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 30.88 -0.00 -0.00 0.00 0.00 0.94 4 1.3 0.5 -0.5 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -30.88 -0.00 -0.00 0.94 0.00 5 1.1 0.5 0.5 0.00 0.94 0.00 0.00 48691.78 0.00 -0.00 -0.00 -0.00 -0.94 -0.00 0.00 6 1.1 0.5 -0.5 -0.94 0.00 0.00 0.00 0.00 48691.78 -0.00 -0.00 -0.94 -0.00 -0.00 -0.00 No symmetry adaption Spin-orbit eigenstates (energies) ====================== Nr E E-E0 E-E0 E-E(1) E-E(1) E-E(1) (au) (au) (cm-1) (au) (cm-1) (eV) 1 -112.89649127 -0.00014071 -30.88 0.00000000 0.00 0.0000 2 -112.89649127 -0.00014071 -30.88 0.00000000 0.00 0.0000 3 -112.89620985 0.00014071 30.88 0.00028142 61.76 0.0077 4 -112.89620985 0.00014071 30.88 0.00028142 61.76 0.0077 5 -112.67449450 0.22185606 48691.78 0.22199677 48722.66 6.0408 6 -112.67449450 0.22185606 48691.78 0.22199677 48722.66 6.0408 Eigenvectors of spin-orbit matrix ================================= Basis states Eigenvectors (columnwise) Nr State S SZ 1 2 3 4 5 6 1 1.2 0.5 0.5 0.706877442 0.018011849 0.705467967 -0.048112395 -0.000019297 0.000000000 0.000000000 -0.000000000 0.000000000 -0.000000000 -0.000000000 0.000000000 2 1.2 0.5 -0.5 0.001516160 -0.059501893 -0.004049894 -0.059383250 0.000000000 -0.000001624 -0.017947924 0.704368683 0.047941641 0.702964211 -0.000000000 0.000019228 3 1.3 0.5 0.5 -0.000000000 0.000000000 0.000000000 0.000000000 -0.000000000 0.000000000 -0.706877237 -0.018011844 0.705468171 -0.048112409 0.000019297 0.000000000 4 1.3 0.5 -0.5 0.017947919 -0.704368480 0.047941655 0.702964415 0.000000000 -0.000019229 0.001516159 -0.059501876 0.004049895 0.059383267 0.000000000 -0.000001624 5 1.1 0.5 0.5 -0.000000059 0.000002296 -0.000000000 -0.000000000 -0.000000000 -0.084175686 0.000000693 -0.000027184 0.000000000 0.000000000 0.000000000 0.996450929 6 1.1 0.5 -0.5 0.000027281 0.000000695 -0.000000000 0.000000000 1.000000000 -0.000000000 -0.000000000 0.000000000 0.000000000 0.000000000 -0.000000000 0.000000000 Composition of spin-orbit eigenvectors ====================================== Nr State S Sz 1 2 3 4 5 6 1 1.2 0.5 0.5 49.97% 0.03% 49.77% 0.23% 0.00% 0.00% 2 1.2 0.5 -0.5 0.03% 49.97% 0.23% 49.77% 0.00% 0.00% 3 1.3 0.5 0.5 49.97% 0.03% 49.77% 0.23% 0.00% 0.00% 4 1.3 0.5 -0.5 0.03% 49.97% 0.23% 49.77% 0.00% 0.00% 5 1.1 0.5 0.5 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 6 1.1 0.5 -0.5 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% Property matrices transformed in SO basis (not sym. adapted) ============================================================ DMX (TRANSFORMED, REAL) 1 2 3 4 5 6 1 0.0000000 -0.0000000 -0.0000000 -0.0000002 0.0001931 -0.0075788 2 -0.0000000 -0.0000000 0.0000002 -0.0000000 -0.0075788 -0.0001931 3 -0.0000000 0.0000002 0.0000000 0.0000000 -0.0005158 -0.0075637 4 -0.0000002 -0.0000000 0.0000000 -0.0000000 -0.0075637 0.0005158 5 0.0001931 -0.0075788 -0.0005158 -0.0075637 0.0000000 0.0000000 6 -0.0075788 -0.0001931 -0.0075637 0.0005158 0.0000000 0.0000000 DMX (TRANSFORMED, IMAG) 1 2 3 4 5 6 1 0.0000000 -0.0000000 0.0000001 0.0000024 0.0022861 0.0897163 2 0.0000000 -0.0000000 0.0000024 -0.0000001 -0.0897163 0.0022861 3 -0.0000001 -0.0000024 0.0000000 0.0000000 -0.0061064 0.0895375 4 -0.0000024 0.0000001 -0.0000000 0.0000000 -0.0895375 -0.0061064 5 -0.0022861 0.0897163 0.0061064 0.0895375 0.0000000 -0.0000000 6 -0.0897163 -0.0022861 -0.0895375 0.0061064 0.0000000 0.0000000 No matrix element larger than 1E-10 Transition matrix elements 1 2 3 4 5 6 REAL PART (a.u.): 0.000000 -0.000000 -0.000000 -0.000000 0.000193 -0.007579 IMAG PART (a.u.): 0.000000 0.000000 -0.000000 -0.000002 -0.002286 -0.089716 ABS. VALUE (a.u.): 0.000000 0.000000 0.000000 0.000002 0.002294 0.090036 ABS. VALUE (Debye): 0.000000 0.000000 0.000000 0.000006 0.005831 0.228833 DMY (TRANSFORMED, REAL) 1 2 3 4 5 6 1 -0.0000000 0.0000000 0.0000002 0.0000024 0.0022861 -0.0897166 2 0.0000000 -0.0000000 -0.0000024 0.0000002 -0.0897166 -0.0022861 3 0.0000002 -0.0000024 0.0000000 0.0000000 0.0061064 0.0895378 4 0.0000024 0.0000002 0.0000000 0.0000000 0.0895378 -0.0061064 5 0.0022861 -0.0897166 0.0061064 0.0895378 0.0000000 -0.0000000 6 -0.0897166 -0.0022861 0.0895378 -0.0061064 -0.0000000 -0.0000000 DMY (TRANSFORMED, IMAG) 1 2 3 4 5 6 1 0.0000000 -0.0000000 0.0000000 0.0000002 -0.0001931 -0.0075789 2 0.0000000 0.0000000 0.0000002 -0.0000000 0.0075789 -0.0001931 3 -0.0000000 -0.0000002 0.0000000 -0.0000000 -0.0005158 0.0075638 4 -0.0000002 0.0000000 0.0000000 -0.0000000 -0.0075638 -0.0005158 5 0.0001931 -0.0075789 0.0005158 0.0075638 -0.0000000 0.0000000 6 0.0075789 0.0001931 -0.0075638 0.0005158 -0.0000000 -0.0000000 No matrix element larger than 1E-10 Transition matrix elements 1 2 3 4 5 6 REAL PART (a.u.): -0.000000 0.000000 0.000000 0.000002 0.002286 -0.089717 IMAG PART (a.u.): 0.000000 0.000000 -0.000000 -0.000000 0.000193 0.007579 ABS. VALUE (a.u.): 0.000000 0.000000 0.000000 0.000002 0.002294 0.090036 ABS. VALUE (Debye): 0.000000 0.000000 0.000001 0.000006 0.005831 0.228834 DMZ (TRANSFORMED, REAL) 1 2 3 4 5 6 1 -0.9214274 -0.0000000 0.0000017 -0.0000002 -0.0000021 -0.0000001 2 -0.0000000 -0.9214274 0.0000002 0.0000017 -0.0000001 0.0000021 3 0.0000017 0.0000002 -0.9214274 0.0000000 -0.0000000 0.0000000 4 -0.0000002 0.0000017 0.0000000 -0.9214274 0.0000000 0.0000000 5 -0.0000021 -0.0000001 -0.0000000 0.0000000 -0.9995182 0.0000000 6 -0.0000001 0.0000021 0.0000000 0.0000000 0.0000000 -0.9995182 DMZ (TRANSFORMED, IMAG) 1 2 3 4 5 6 1 0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 2 0.0000000 -0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 4 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 -0.0000000 5 0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 6 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 Expectation values STATE: 1 2 3 4 5 6 VALUE: -0.921427 -0.921427 -0.921427 -0.921427 -0.999518 -0.999518 Transition matrix elements 1 2 3 4 5 6 REAL PART (a.u.): -0.921427 -0.000000 0.000002 -0.000000 -0.000002 -0.000000 IMAG PART (a.u.): 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ABS. VALUE (a.u.): 0.921427 0.000000 0.000002 0.000000 0.000002 0.000000 ABS. VALUE (Debye): 2.341882 0.000000 0.000004 0.000000 0.000005 0.000000 ********************************************************************************************************************************** DATASETS * FILE NREC LENGTH (MB) RECORD NAMES 1 25 3.48 500 610 700 900 950 970 1000 129 960 1100 VAR BASINP GEOM SYMINP ZMAT AOBASIS BASIS P2S ABASIS S 1400 1410 1200 1210 1080 1600 1650 1300 1700 960(1) T V H0 H01 AOSYM SMH MOLCAS ERIS OPER ABASIS 1380 1700(1) 1301 1302 1303 JKOP OPER LSX2 LSY2 LSZ2 2 7 2.49 700 1000 2100 2140 6000 6100 6200 GEOM BASIS RHF MCSCF MRCI MRCI MRCI PROGRAMS * TOTAL CI CI CI CI MULTI HF INT CPU TIMES * 33.62 2.90 10.21 10.06 9.84 0.20 0.02 0.04 REAL TIME * 35.27 SEC DISK USED * 19.50 MB ********************************************************************************************************************************** CI CI CI MULTI HF-SCF -112.67449450 -112.89635056 -112.89635056 -112.43488079 -112.61197209 ********************************************************************************************************************************** Variable memory released |
» 收录本帖的淘帖专辑推荐
我的收藏 |
» 猜你喜欢
招贤纳博(已结束)
已经有28人回复
南京大学蔡亮课题组诚招2026年申请-考核制博士生2-3名(电解水制氢,XAFS谱学等)
已经有32人回复
物理化学论文润色/翻译怎么收费?
已经有187人回复
表征测试机构后台私聊我
已经有0人回复
求助各位大佬配位化学学习教材!!!
已经有0人回复
大连海事大学国家级人才团队2026年博士研究生招生启事
已经有10人回复
Coordination Chemistry Reviews
已经有0人回复
内蒙古大学青年长江学者王蕾教授课题组2026年博士招聘,2-3人
已经有10人回复
» 本主题相关价值贴推荐,对您同样有帮助:
国基中标本子_污水滴灌灌水器内液-固-气多维耦合流场特征与堵塞规律
已经有65人回复
相互作用的昨天和今天:从力、能量到信息 [当然是转载]
已经有6人回复
全国第二届理论与计算化学软件Molpro Molcas培训班
已经有19人回复
关于过渡态的计算的能量问题。
已经有7人回复
请教用molpro打印氢分子离子的重叠积矩阵、单电子积分矩阵、偶极矩阵
已经有3人回复
如何将多模光耦合到单模光纤里,或者将其转换为单模光?
已经有28人回复
如何从计算输出中找到分子轨道
已经有5人回复
请懂激光器的朋友帮下忙:激光能量密度是怎么算出来的?
已经有18人回复
总能量和形成能的区别
已经有4人回复
扩展有限元热力耦合方程及理论
已经有5人回复
MS几何优化好的超胞,算能量的时候为什么得不到结果
已经有6人回复
关于Molpro自旋轨道耦合输出的问题
已经有9人回复
【求助】CPMD的疑问,电子能量
已经有3人回复
【求助】VASP考虑自旋轨道耦合的话,如何编译
已经有17人回复
【求助】Molpro如何执行旋轨耦合计算 如何执行态平均计算?
已经有10人回复
5楼2012-04-09 19:25:00
beefly
专家顾问 (职业作家)
地沟油冶炼专家
-

专家经验: +457 - QC强帖: 12
- 应助: 86 (初中生)
- 金币: 12715.9
- 散金: 27307
- 红花: 300
- 帖子: 4663
- 在线: 925.3小时
- 虫号: 408372
- 注册: 2007-06-21
- 性别: GG
- 专业: 理论和计算化学
- 管辖: 计算模拟
小红豆(金币+10): 奖励! 2012-02-29 21:48:38
|
在“Spin-orbit eigenstates (energies)”这一部分是omega态的能量 如果自旋出现单重、三重以外的态,molpro不把omega态按照对称性分类,需要根据旋轨耦合矩阵的特征矢量自己判断。 一般是看这一部分“Composition of spin-orbit eigenvectors”,可以看到5、6列来自2Sigma+态。因为2Sigma+态只能产生omega=1/2,所以5、6列对应omega=1/2。1-4列对应2Pi,但由于2Pi和2Sigma+的能量相差太大,看不到重叠,所以在这个例子中无法分辨omega=1/2和3/2。 再看“Basis states Eigenvectors (columnwise)”这一部分。2Sigma+态(5,6行)对第3、4列的贡献为0,说明3,4列与2Sigma+态有不同的omega。2Sigma+态的omega=1/2,那么3,4列就是omega=3/2。排除掉3、4 列,那么1,2列就是omega=1/2。 对于双原子分子,除了omega=0+,0-以外,所有的omega态都是二重简并的,所以这个例子中omega态都是成对出现的。 |
» 本帖已获得的红花(最新10朵)

2楼2012-02-29 21:10:07
3楼2012-02-29 21:19:50
4楼2012-03-23 10:47:30













回复此楼
chj787