24小时热门版块排行榜    

CyRhmU.jpeg
查看: 820  |  回复: 3

qiaodancumt

木虫 (小有名气)

[求助] 谁有这本书 Video Tracking, Emilio Maggio写的

大家帮忙找找,找到了大家可以好好看看,还是蛮不错的啊。
Preview
Video Tracking: Theory and Practice

1 What is video tracking?
    1.1 Introduction
    1.2 The design of a tracker
        1.2.1 Challenges in video tracking
        1.2.2 Main components of a video tracker
    1.3 Problem formulation
        1.3.1 Single target tracking
        1.3.2 Multiple target tracking
        1.3.3 Definitions
    1.4 Interactive vs. automated tracking
    1.5 Summary

2 Applications
    2.1 Introduction
    2.2 Media production and augmented reality
    2.3 Medical applications and biological research
    2.4 Surveillance and business intelligence
    2.5 Robotics and unmanned vehicles
    2.6 Tele-collaboration and interactive gaming
    2.7 Art installations and performances
    2.8 Summary

3 Feature extraction
    3.1 Introduction
    3.2 From light to useful information
        3.2.1 Measuring light
        3.2.2 The appearance of targets
    3.3 Low-level features
        3.3.1 Colour
        3.3.2 Photometric colour invariants
        3.3.3 Gradient and derivatives
    3.4 Mid-level features
        3.4.1 Edges
        3.4.2 Interest points and interest regions
        3.4.3 Uniform regions
    3.5 High-level features
        3.5.1 Modelling the background
        3.5.2 Modelling the object
    3.6 Summary

4 Target representation
    4.1 Introduction
    4.2 Shape representation
        4.2.1 Basic models
        4.2.2 Articulated models
        4.2.3 Deformable models
    4.3 Appearance representation
        4.3.1 Template
        4.3.2 Histograms
        4.3.3 Coping with appearance changes
    4.4 Summary

5 Localisation
    5.1 Introduction
    5.2 Single-hypothesis methods
        5.2.1 Gradient-based trackers
        5.2.2 Bayes tracking and the Kalman filter
    5.3 Multi-hypothesis methods
        5.3.1 Grid sampling
        5.3.2 Particle filter
        5.3.3 Hybrid methods
    5.4 Summary

6 Fusion
    6.1 Introduction
    6.2 Fusion strategies
        6.2.1 Tracker-level fusion
        6.2.2 Measurement-level fusion
    6.3 Feature fusion in a Particle Filter
        6.3.1 Fusion of likelihoods
        6.3.2 Multi-feature resampling
        6.3.3 Feature reliability
        6.3.4 Temporal smoothing
        6.3.5 Example
    6.4 Summary

7 Multi-target management
    7.1 Introduction
    7.2 Measurement validation
    7.3 Data association
        7.3.1 Nearest Neighbour
        7.3.2 Graph matching
        7.3.3 Multiple Hypothesis Tracking
    7.4 Random Finite Sets for tracking
    7.5 Probabilistic Hypothesis Density filter
    7.6 The Particle PHD filter
        7.6.1 Dynamic and observation models
        7.6.2 Birth and clutter models
        7.6.3 Importance sampling
        7.6.4 Resampling
        7.6.5 Particle clustering
        7.6.6 Examples
    7.7 Summary

8 Context modelling
    8.1 Introduction
    8.2 Tracking with context modelling
        8.2.1 Contextual information
        8.2.2 Influence of the context on the filter
    8.3 Birth and clutter intensity estimation
        8.3.1 Birth density estimation
        8.3.2 Clutter density estimation
        8.3.3 Tracking with contextual feedback
    8.4 Summary

9 Performance evaluation
    9.1 Introduction
    9.2 Analytical vs. empirical methods
    9.3 Ground truth
    9.4 Evaluation scores
        9.4.1 Localisation scores
        9.4.2 Classification scores
    9.5 Comparing trackers
        9.5.1 Target life-span
        9.5.2 Statistical significance
        9.5.3 Repeatability
    9.6 Evaluation protocols
        9.6.1 Low-level evaluation protocols
        9.6.2 High-level evaluation protocols
    9.7 Datasets
        9.7.1 Surveillance
        9.7.2 Human-computer interaction
        9.7.3 Sport analysis
    9.8 Summary

Epilogue

Further reading

Appendix A: Comparative results
    A.1 Single vs. structural histogram
        A.1.1 Experimental setup
        A.1.2 Discussion
    A.2 Localisation algorithms
        A.2.1 Experimental setup
        A.2.2 Discussion
    A.3 Multi-feature fusion
        A.3.1 Experimental setup
        A.3.2 Reliability scores
        A.3.3 Adaptive vs. non-adaptive tracker
        A.3.4 Computational complexity
    A.4 PHD filter
        A.4.1 Experimental setup
        A.4.2 Discussion
        A.4.3 Failure modalities
        A.4.4 Computational cost
    A.5 Context modelling
        A.5.1 Experimental setup
        A.5.2 Discussion

About the authors

Notation

Acronyms

Index
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

717235534

木虫 (小有名气)

【答案】应助回帖

感谢参与,应助指数 +1
qiaodancumt(金币+10): ★★★很有帮助 2012-02-20 15:37:51
2楼2012-02-20 13:28:49
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

qiaodancumt

木虫 (小有名气)

引用回帖:
: Originally posted by 717235534 at 2012-02-20 13:28:49:
http://www.rayfile.com/files/b7c ... -90ef-0015c55db73d/

谢了噢,很不错啊
3楼2012-02-20 15:38:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lupei1017

新虫 (初入文坛)

谢谢哟
点点
4楼2012-02-21 21:52:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 qiaodancumt 的主题更新
信息提示
请填处理意见