| 查看: 22163 | 回复: 689 | ||
| 本帖产生 1 个 MN-EPI ,点击这里进行查看 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[资源]
大牛王中林最新力作《Three-Dimensional Nanoarchitectures》
|
||
|
大牛王中林继《nanogenerators for self-powered Devices and systems》之后又一最新力作《Three-Dimensional Nanoarchitectures:Designing Next-Generation Devices》,作纳米器件方面的同学不可不看的一本好书! Three-Dimensional Nanoarchitectures:Designing Next-Generation Devices Contents 1 Building 3D Nanostructured Devices by Self-Assembly ....... 1 Steve Hu, Jeong-Hyun Cho, and David H. Gracias 1.1 The Pressing Need for 3D Patterned Nanofabrication . . .... 1 1.2 Self-Assembly Using Molecular Linkages ............ 3 1.2.1 Three-Dimensional Self-Assembly Using Protein Linkages . . .................. 4 1.2.2 Three-Dimensional Self-Assembly with DNA Linkages 6 1.3 Three-Dimensional Self-Assembly Using Physical Forces . . . 10 1.4 Three-Dimensional Patterned Nanofabrication by Curving and Bending Nanostructures ............. 12 1.4.1 Curving Hingeless Nanostructures Using Stress .... 13 1.4.2 Three-Dimensional Nanofabrication by Bending Hinged Panels to Create Patterned Polyhedral Nanoparticles . . . ............. 20 1.5 Conclusions ............................ 22 References ................................ 23 2 Bio-inspired 3D Nanoarchitectures .................. 29 Jian Shi and Xudong Wang 2.1 Introduction ............................ 29 2.2 Historical Perspective ...................... 31 2.3 Bio-inspired Nanophotonics . .................. 31 2.3.1 Photonic Crystals . . .................. 31 2.3.2 ColorMineinNature .................. 34 2.3.3 Natural Photonic Crystals . . . ............. 35 2.3.3.1 SpineofSeaMouse ............. 35 2.3.3.2 Diatom.................... 37 2.3.3.3 ButterflyWings ............... 37 2.3.3.4 Beetles.................... 40 2.3.3.5 Weevil .................... 43 2.3.4 Other Natural Photonics ................. 43 2.3.4.1 Brittle Star .................. 43 2.3.4.2 Glass Sponge ................. 45 2.4 Bio-inspired Fabrication of Nanostructures . . . ........ 47 2.4.1 Biomineralization.................... 47 2.4.2 BiologicalFineStructureDuplication ......... 48 2.4.2.1 ReplicationbySurfaceCoating ....... 49 2.4.2.2 Replication by Atom Exchange . . . .... 52 2.5 Bio-inspired Functionality . . .................. 54 2.6 Conclusion ............................ 56 References ................................ 57 3 Building 3D Micro- and Nanostructures Through Nanoimprint .. 59 Xing Cheng 3.1 Introduction to 3D Structure Fabrication Through Nanoimprint . 59 3.2 Overview of Nanoimprint Lithography ............. 60 3.2.1 Fundamentals of Nanoimprint Lithography . . . .... 60 3.2.2 Materials for Nanoimprint Lithography . ........ 61 3.3 Building 3D Nanostructures by Nanoimprint . . ........ 63 3.3.1 DirectPatterningof3DStructuresinOneStep..... 63 3.3.1.1 Replicating 3D Polymer Structures from3DTemplates ............. 63 3.3.1.2 Applications of 3D Polymer Structures by One-Step Nanoimprint .... 65 Dual Damascene Structure for Back-End Processing of MicroelectronicCircuitChips...... 66 Advanced Optical Components Basedon3DPolymerStructures .... 67 3.3.2 Building 3D Nanostructures by Transfer Bonding and Sequential Layer Stacking ........ 70 3.3.2.1 Principles of Transfer Bonding and Sequential Layer Stacking . . ........ 70 3.3.2.2 3D Structures Built by Transfer Bonding and Sequential Layer Stacking . . . 72 3.3.2.3 Defect Modes and Process Yield of Transfer Bonding and Sequential Layer Stacking . . . ............. 80 3.3.3 Building 3D Nanostructures by Two Consecutive Nanoimprints . . ............. 82 3.4 SummaryandFutureOutlook .................. 82 References ................................ 84 4 Electrochemical Growth of Nanostructured Materials ....... 89 Jin-Hee Lim and John B. Wiley 4.1 Magnetic Nanomaterials . . . .................. 90 4.2 Semiconductor Nanostructures .................. 93 4.3 Thermoelectric Nanomaterials .................. 95 4.4 Conducting Polymer Nanostructures . . ............. 96 4.5 Nanotube and Core–Shell Nanostructures ............ 98 4.6 PorousAuNanowires ...................... 99 4.7 ModificationofNanowires.................... 102 4.8 Functionalization of Nanowires ................. 104 4.9 Nanostructure Arrays on Substrates . . ............. 106 4.10 PatterningofNanowires ..................... 107 References ................................ 111 Three-Dimensional Micro/Nanomaterials Generated by Fiber-Drawing Nanomanufacturing ................ 117 Zeyu Ma, Yan Hong, Shujiang Ding, Minghui Zhang, Mainul Hossain, and Ming Su 5.1 Introduction ............................ 117 5.2 FiberDrawTower ........................ 117 5.3 MaterialsSelections ....................... 119 5.4 Drawing Process . . ....................... 119 5.5 SizeDesign............................ 120 5.6 Three-Dimensional Assembling ................. 122 5.7 Metallic Nanowires . ....................... 122 5.8 Semiconductor Nanowires . . .................. 123 5.9 Glass Microchannel Array . . .................. 125 5.10 DifferentialEtchingofGlasses.................. 125 5.11 GlassMicrospikeArray ..................... 126 5.12 Hybrid Glass Membranes . . .................. 128 5.13 Textured Structure of Encapsulated Paraffin Wax Microfiber . . 130 5.14 Conclusions ............................ 131 References ................................ 131 One-Dimensional Metal Oxide Nanostructures for Photoelectrochemical Hydrogen Generation ........... 133 Yat Li 6.1 Introduction ............................ 133 6.1.1 Photoelectrochemical Hydrogen Generation . . .... 133 6.1.2 Challenges in Metal Oxide-Based PEC Hydrogen Generation .................. 135 6.1.3 One-Dimensional Nanomaterials for Photoelectrodes . 136 6.2 Pristine Metal Oxide Nanowire/Nanotube-Arrayed Photoelectrodes . . . ....................... 138 6.2.1 Nanowire-Arrayed Photoelectrodes . . . ........ 138 6.2.1.1 Hematite (α-Fe2O3) ............. 138 6.2.1.2 Titanium Oxide (TiO2) and Zinc Oxide(ZnO)................. 139 6.2.1.3 Tungsten Trioxide (WO3) .......... 142 6.2.2 Nanotube-Arrayed Photoelectrodes . . . ........ 143 6.3 Element-Doped Metal Oxide 1D Nanostructures ........ 146 6.3.1 TiO2 Nanostructures .................. 146 6.3.2 ZnO Nanostructures . .................. 149 6.3.3 Hematite (α-Fe2O3) Nanostructures . . ........ 149 6.4 Quantum Dot Sensitizations . .................. 152 6.4.1 Background ....................... 152 6.4.2 Quantum Dot-Sensitized ZnO Nanowires . . . .... 153 6.4.3 Quantum Dot-Cosensitized Nanowires . ........ 154 6.4.4 Double-Sided Quantum Dot Sensitization . . . .... 155 6.5 Synergistic Effect of Quantum Dot Sensitization andElementalDoping ...................... 158 6.6 Concluding Remarks ....................... 160 References ................................ 162 7 Helical Nanostructures: Synthesis and Potential Applications ... 167 Pu-Xian Gao and Gang Liu 7.1 Introduction ............................ 167 7.2 Semiconductor Nanohelices . .................. 168 7.2.1 ZnO Nanohelices . . .................. 168 7.2.1.1 Superlattice-Structured ZnO Nanohelices . . 168 7.2.1.2 Superelasticity, Nanobuckling, and Nonlinear Electronic Transport of Superlattice-Structured ZnO Nanohelices 170 Superelasticity of Superlattice- Structured ZnO Nanohelix . . . .... 171 Nanobuckling and Fracture of Superlattice-Structured ZnO Nanohelix . . . ............. 172 Nonlinear Electronic Transport of Superlattice-Structured ZnO Nanohelix . . . ............. 174 7.2.1.3 Other ZnO Nanohelices . . . ........ 176 7.2.2 SiO2 Nanohelices . . .................. 178 7.2.3 CdS Nanohelices . . .................. 183 7.2.4 InP Nanohelices . . . .................. 188 7.2.5 Ga2O3 Nanohelices . .................. 190 7.3 Carbon-Related Nanohelices . .................. 191 7.3.1 Helical Carbon Nanoribbon/Nanocoil . ........ 192 7.3.2 Helical Carbon Nanotube . . . ............. 194 7.3.3 Tungsten-Containing Carbon (WC) Nanospring .... 195 7.4 Other Nanohelices . ....................... 197 7.4.1 Helical SiC/SiO2 Core–Shell Nanowires and Si3N4 Microcoils.................. 197 7.4.2 MgB2 Nanohelices . .................. 198 7.4.3 SiSpirals ........................ 199 7.5 PotentialApplications ...................... 201 7.6 Summary............................. 202 References ................................ 202 8 Hierarchical 3D Nanostructure Organization for Next-Generation Devices ...................... 205 Eric N. Dattoli and Wei Lu 8.1 Introduction ............................ 205 8.2 FluidicFlow-AssistedAssembly................. 206 8.2.1 Drop-Drying....................... 207 8.2.2 Channel-Confined Fluidic Flow ............. 208 8.2.3 Blown Bubble Film Transfer . ............. 210 8.3 Nematic Liquid Crystal-Induced Assembly . . . ........ 212 8.4 Langmuir–Blodgett Assembly .................. 213 8.5 Dielectrophoresis Assembly . .................. 215 8.6 Chemical Affinity and Electrostatic Interaction-Directed Assembly............................. 219 8.7 ContactTransfer ......................... 221 8.7.1 Shear-Assisted Contact Printing ............ 221 8.7.2 StampTransfer ..................... 224 8.8 DirectedGrowth ......................... 226 8.8.1 Horizontal Growth . .................. 226 8.8.2 VerticalGrowth..................... 228 8.9 DeviceApplications ....................... 230 8.9.1 Thin-FilmTransistors.................. 230 8.9.1.1 Performance Considerations forNW-orNT-BasedTFTs ......... 230 8.9.1.2 TransparentNanowire-BasedTFTs ..... 233 8.9.1.3 CNT-BasedTFTs .............. 235 8.9.2 3D Multilayer Device Structures ............ 237 8.9.3 Sensors . . ....................... 240 8.9.4 Vertical Nanowire Field-Effect Transistors (FETs) . . . 242 8.10 Conclusion ............................ 243 References ................................ 243 9 Strain-Induced, Self Rolled-Up Semiconductor Microtube Resonators: A New Architecture for Photonic Device Applications 249 Xin Miao, Ik Su Chun, and Xiuling Li 9.1 Introduction ............................ 249 9.2 Formation Process . ....................... 250 9.3 Photonic Applications of Rolled-Up Semiconductor Tubes . . . 252 9.3.1 Spontaneous Emission from Quantum Well Microtubes: Intensity Enhancement and Energy Shift . 252 9.3.2 Optical Resonance Modes in Rolled-Up MicrotubeRingCavity ................. 254 9.3.3 Optically Pumped Lasing from Rolled-Up MicrotubeRingCavity ................. 256 References ................................ 258 10 Carbon Nanotube Arrays: Synthesis, Properties, and Applications 261 Suman Neupane and Wenzhi Li 10.1 Introduction ............................ 261 10.2 Carbon Nanotube Synthesis . .................. 262 10.2.1 Arc Discharge ...................... 262 10.2.2 LaserAblation...................... 262 10.2.3 Electrochemical Synthesis . . ............. 263 10.2.4 Diffusion Flame Synthesis . . ............. 264 10.2.5 Chemical Vapor Deposition . . ............. 264 10.3 Carbon Nanotube Arrays . . . .................. 265 10.3.1 CNTA Synthesis Using Patterned Catalyst Arrays . . . 266 10.3.1.1 Pulsed Laser Deposition . . . ........ 266 10.3.1.2 Anodic Aluminum Oxide (AAO) Templates 266 10.3.1.3 ReverseMicelleMethod........... 266 10.3.1.4 Photolithography . . ............. 267 10.3.1.5 Electrochemical Etching . . . ........ 268 10.3.1.6 Sputtering .................. 268 10.3.1.7 Nanosphere Lithography . . . ........ 268 10.3.1.8 Sol–GelMethod............... 269 10.3.2 CNTA Synthesis by Other Methods . . . ........ 269 10.3.3 Horizontal Arrays of CNTs . . ............. 270 10.4 Mechanical Properties ...................... 270 10.5 Thermal Properties . ....................... 271 10.6 Electrical Properties ....................... 273 10.7 ApplicationsofCNTsandCNTAs................ 276 10.7.1 Hydrogen Storage . . .................. 276 10.7.2 CNTs as Sensors . . .................. 278 10.7.3 CNTs for Battery and Supercapacitor Applications . . 279 10.7.4 CNTs for Photovoltaic Device ............. 279 10.8 Conclusions ............................ 280 References ................................ 281 11 Molecular Rotors Observed by Scanning Tunneling Microscopy . . 287 Ye-Liang Wang, Qi Liu, Hai-Gang Zhang, Hai-Ming Guo, and Hong-Jun Gao 11.1 Introduction ............................ 287 11.2 Solution-Based and Surface-Mounted Molecular Machines . . . 289 11.3 Single Molecular Rotors at Surfaces . . ............. 290 11.3.1 A Monomolecular Rotor in Supramolecular Network . 290 11.3.2 Gear-Like Rotation of Molecular Rotor Along the Edge of the Molecular Island ............ 292 11.3.3 Thermal-Driven Rotation on Reconstructed SurfaceTemplate .................... 292 11.3.4 STM-Driven Rotation on Reconstructed SurfaceTemplate .................... 301 11.3.5 Molecular Rotors with Variable Rotation Radii . .... 303 11.3.6 Rolling Motion of a Single Molecule at the Surface . . 305 11.4 Array of Molecular Motors at Surfaces ............. 308 11.5 Outlook.............................. 310 11.6 Conclusion ............................ 311 References ................................ 311 2 Nanophotonic Devices Based on ZnO Nanowires .......... 317 Qing Yang, Limin Tong, and Zhong Lin Wang 12.1 Introduction ............................ 317 12.2 PureOpticalDevicesBasedonZnONWs............ 318 12.2.1 ZnO NW Subwavelength Waveguides andTheirApplications ................. 318 12.2.2 OpticallyPumpedLasersinZnONWs......... 322 12.2.3 Nonlinear Optical Devices Based on ZnO NWs .... 330 12.3 OptoelectronicDevicesBasedZnONWs ............ 333 12.3.1 ZnONWUltra-sensitiveUVandInfraredPDs..... 333 12.3.2 Dye-Sensitized Solar Cells Based on ZnO NWs .... 339 12.3.3 Single ZnO NW and NW Array Light-Emitting Diodes 345 12.3.4 Electrically Pumped Random Lasing from ZnO Nanorod Arrays . . . .................. 350 12.4 Piezo-phototronic Devices Based on ZnO NWs . ........ 352 12.4.1 Optimizing the Power Output of a ZnO Photocell by Piezopotential . . ............. 353 12.4.2 Enhancing Sensitivity of a Single ZnO Micro-/NW Photodetector by Piezo-phototronic Effect 354 12.5 Conclusions ............................ 356 References ................................ 356 3 Nanostructured Light Management for Advanced Photovoltaics . . 363 Jia Zhu, Zongfu Yu, Sangmoo Jeong, Ching-Mei Hsu, Shanui Fan, and Yi Cui 13.1 Introduction ............................ 363 13.2 Fabrication of Nanowire and Nanocone Arrays . ........ 365 13.2.1 Method ......................... 366 13.2.2 Shape Control: Nanowires and Nanocones . . . .... 366 13.2.3 Diameter and Spacing Control ............. 368 13.2.4 Large-Scale Process . .................. 368 13.3 Photon Management: Antireflection . . ............. 372 13.3.1 Nanowires........................ 372 13.3.2 Nanocones . ....................... 374 13.4 Photon Management: Absorption Enhancement . ........ 376 13.4.1 Different Mechanisms .................. 376 13.4.2 Nanodome Structures .................. 378 13.5 Solar Cell Performance ...................... 383 13.6 Fundamental Limit of Light Trapping in Nanophotonics .... 384 13.7 SummaryandOutlook ...................... 388 References ................................ 389 14 Highly Sensitive and Selective Gas Detection by 3D Metal Oxide Nanoarchitectures ........................ 391 Jiajun Chen, Kai Wang, Baobao Cao, and Weilie Zhou 14.1 Introduction ............................ 391 14.2 Highly Sensitive Gas Detection by Stand-alone 3D Nanosensors 394 14.2.1 Metal Oxide Nanowire/Nanotube Array Gas Sensors . 395 14.2.1.1 NanowireArrays............... 395 14.2.1.2 Nanotube Arrays . . ............. 399 14.2.2 Gas Sensors Based on Opal and Inverted Opal Nanostructures . . . .................. 401 14.3 Sensor Arrays Based on 3D Nanostructured Gas Sensors .... 403 14.4 Conclusion Remarks ....................... 408 References ................................ 409 15 Quantum Dot-Sensitized, Three-Dimensional Nanostructures for Photovoltaic Applications ............ 413 Jun Wang, Xukai Xin, Daniel Vennerberg, and Zhiqun Lin 15.1 Introduction ............................ 413 15.2 Quantum Dot-Sensitized Solar Cells . . ............. 415 15.2.1 Overview ........................ 415 15.2.2 Synthesis of Quantum Dots and Surface Functionalization . . .................. 415 15.2.3 Quantum Dot-Sensitized Nanoparticle Films . . .... 419 15.2.4 Quantum Dot-Sensitized Nanowire Arrays . . . .... 426 15.2.5 Quantum Dot-Sensitized Nanotube Arrays . . . .... 428 15.2.6 Investigation of Charge Injection in Quantum Dot-Sensitized Solar Cells . . ............. 432 15.2.6.1 Generation of Excited Electrons . . . .... 432 15.2.6.2 Recombination and Transportation ofExcitedElectrons............. 434 15.3 Outlook.............................. 438 References ................................ 439 16 Three-Dimensional Photovoltaic Devices Based on Vertically Aligned Nanowire Array ................ 447 Kai Wang, Jiajun Chen, Satish Chandra Rai, and Weilie Zhou 16.1 Introduction ............................ 447 16.2 Photovoltaic Devices Based on Nanowire Array Integrated with the Substrate . .................. 448 16.3 Photovoltaic Devices Based on Nanowire Array withAxialJunctions ....................... 451 16.4 Photovoltaic Devices Based on Nanowire Array Embedded in Thin Film . . . .................. 452 16.5 Photovoltaic Devices Based on Nanowire Array with Core–Shell Structure . . .................. 453 16.5.1 p–n Core–Shell Homojunction Photovoltaic Devices . . 453 16.5.2 Type II Core–Shell Heterojunction Photovoltaic Devices ......................... 456 16.5.2.1 Synthesis of ZnO/ZnSe and ZnO/ZnS Core–Shell Nanowire Array . . . 457 16.5.2.2 Structural and Optical Properties of ZnO/ZnSe Core–Shell Nanowire Array . . . 458 16.5.2.3 Photoresponse of ZnO/ZnSe NanowireArray ............... 461 16.5.2.4 Morphologies, Structure and Optical Properties of ZnO/ZnS Nanowire Array . . . 462 16.5.2.5 Photovoltaic Effect of ZnO/ZnS NanowireArray ............... 465 16.6 Summary and Perspectives . . .................. 469 References ................................ 471 17 Supercapacitors Based on 3D Nanostructured Electrodes ...... 477 Hao Zhang, Gaoping Cao, and Yusheng Yang 17.1 Supercapacitors . . . ....................... 478 17.2 Electrochemical Double Layer Capacitors Based on 3D Nanostructured Electrodes . . .................. 479 17.2.1 Electrodes Based on Activated Carbons and Activated Carbon Fibers: Powdered Carbons with Disordered Pore Structures ........ 480 17.2.2 Electrodes Based on Carbon Foams, Carbon Aerogels, and Other Monolithic Carbon: Monolithic Carbon with Disordered Micropores .... 483 17.2.3 Electrodes Based on Template Carbons, Graphene, Carbide-Derived Carbons, and Hierarchical Porous Carbons: Powdered Carbons with High Mesopore Ratios or Reasonable PSD . .................. 486 17.2.4 Electrodes Based on Carbon Nanotubes: Monolithic Carbons with Developed Mesoporous Structures ................. 492 17.3 Pseudo-capacitors Based on 3D Nanostructured Electrodes . . . 497 17.3.1 Nanostructured Metal Oxide Electrode Materials . . . 498 17.3.2 Nanostructured Conducting Polymer Electrode Materials ........................ 500 17.4 Hybrid Capacitors Based on 3D Nanostructured Electrodes . . . 502 17.4.1 Nanostructured Electrodes Based on Metal Oxides/CarbonComposite ............... 504 17.4.2 Nanostructured Electrodes Based onPolymers/CarbonComposites............ 508 17.5 Conclusions and Perspectives .................. 513 References ................................ 514 18 Aligned Ni-Coated Single-Walled Carbon Nanotubes Under Magnetic Field for Coolant Applications ........... 523 Haiping Hong, Mark Horton, and G.P. Peterson 18.1 Introduction ............................ 523 18.2 Experiment ............................ 524 18.3 ResultsandDiscussion...................... 525 18.3.1 Thermal Conductivity of Nanofluids Containing Ni-Coated Nanotubes ............ 525 18.3.2 Evidence of Magnetic Alignment of Ni-Coated Nanotubes . ....................... 529 18.4 Conclusion ............................ 533 References ................................ 534 Index ..................................... 535 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Three-Dimensional Nanoarchitectures.part1.rar
- 附件 2 : Three-Dimensional Nanoarchitectures.part2.rar
- 附件 3 : Three-Dimensional Nanoarchitectures.part3.rar
- 附件 4 : Three-Dimensional Nanoarchitectures.part4.rar
- 附件 5 : Three-Dimensional Nanoarchitectures.part5.rar
2012-02-16 14:32:05, 4.88 M
2012-02-16 14:32:09, 4.88 M
2012-02-16 14:32:17, 4.88 M
2012-02-16 14:32:22, 4.88 M
2012-02-16 14:32:24, 417.16 K
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
无机化学论文润色/翻译怎么收费?
已经有123人回复
» 本主题相关商家推荐: (我也要在这里推广)
413楼2012-03-27 21:30:51
13楼2012-02-16 16:20:40
简单回复
pipi3楼
2012-02-16 14:47
回复
五星好评 顶一下,感谢分享!
vflash4楼
2012-02-16 15:10
回复
五星好评 顶一下,感谢分享!
vflash5楼
2012-02-16 15:12
回复
顶一下,感谢分享!
hpcqq6楼
2012-02-16 15:22
回复
五星好评 顶一下,感谢分享!
zhulw7楼
2012-02-16 15:50
回复
五星好评 顶一下,感谢分享!
zhulw8楼
2012-02-16 15:51
回复
顶一下,感谢分享!
Nano-mse9楼
2012-02-16 16:04
回复
五星好评 顶一下,感谢分享!
Nano-mse10楼
2012-02-16 16:06
回复
顶一下,感谢分享!
bamboo123711楼
2012-02-16 16:08
回复
五星好评 顶一下,感谢分享!
hpcqq12楼
2012-02-16 16:17
回复
顶一下,感谢分享!
niulengyuan14楼
2012-02-16 16:26
回复
五星好评 
















回复此楼
wangyaobsz