CyRhmU.jpeg
查看: 22163  |  回复: 689
本帖产生 1 个 MN-EPI ,点击这里进行查看
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

seinberg

铁杆木虫 (著名写手)


[资源] 大牛王中林最新力作《Three-Dimensional Nanoarchitectures》

大牛王中林继《nanogenerators for self-powered Devices and systems》之后又一最新力作《Three-Dimensional Nanoarchitectures:Designing Next-Generation Devices》,作纳米器件方面的同学不可不看的一本好书!

Three-Dimensional Nanoarchitectures:Designing Next-Generation Devices
Contents
1 Building 3D Nanostructured Devices by Self-Assembly ....... 1
Steve Hu, Jeong-Hyun Cho, and David H. Gracias
1.1 The Pressing Need for 3D Patterned Nanofabrication . . .... 1
1.2 Self-Assembly Using Molecular Linkages ............ 3
1.2.1 Three-Dimensional Self-Assembly Using
Protein Linkages . . .................. 4
1.2.2 Three-Dimensional Self-Assembly with DNA Linkages 6
1.3 Three-Dimensional Self-Assembly Using Physical Forces . . . 10
1.4 Three-Dimensional Patterned Nanofabrication
by Curving and Bending Nanostructures ............. 12
1.4.1 Curving Hingeless Nanostructures Using Stress .... 13
1.4.2 Three-Dimensional Nanofabrication
by Bending Hinged Panels to Create Patterned
Polyhedral Nanoparticles . . . ............. 20
1.5 Conclusions ............................ 22
References ................................ 23
2 Bio-inspired 3D Nanoarchitectures .................. 29
Jian Shi and Xudong Wang
2.1 Introduction ............................ 29
2.2 Historical Perspective ...................... 31
2.3 Bio-inspired Nanophotonics . .................. 31
2.3.1 Photonic Crystals . . .................. 31
2.3.2 ColorMineinNature .................. 34
2.3.3 Natural Photonic Crystals . . . ............. 35
2.3.3.1 SpineofSeaMouse ............. 35
2.3.3.2 Diatom.................... 37
2.3.3.3 ButterflyWings ............... 37
2.3.3.4 Beetles.................... 40
2.3.3.5 Weevil .................... 43
2.3.4 Other Natural Photonics ................. 43
2.3.4.1 Brittle Star .................. 43
2.3.4.2 Glass Sponge ................. 45
2.4 Bio-inspired Fabrication of Nanostructures . . . ........ 47
2.4.1 Biomineralization.................... 47
2.4.2 BiologicalFineStructureDuplication ......... 48
2.4.2.1 ReplicationbySurfaceCoating ....... 49
2.4.2.2 Replication by Atom Exchange . . . .... 52
2.5 Bio-inspired Functionality . . .................. 54
2.6 Conclusion ............................ 56
References ................................ 57
3 Building 3D Micro- and Nanostructures Through Nanoimprint .. 59
Xing Cheng
3.1 Introduction to 3D Structure Fabrication Through Nanoimprint . 59
3.2 Overview of Nanoimprint Lithography ............. 60
3.2.1 Fundamentals of Nanoimprint Lithography . . . .... 60
3.2.2 Materials for Nanoimprint Lithography . ........ 61
3.3 Building 3D Nanostructures by Nanoimprint . . ........ 63
3.3.1 DirectPatterningof3DStructuresinOneStep..... 63
3.3.1.1 Replicating 3D Polymer Structures
from3DTemplates ............. 63
3.3.1.2 Applications of 3D Polymer
Structures by One-Step Nanoimprint .... 65
Dual Damascene Structure
for Back-End Processing of
MicroelectronicCircuitChips...... 66
Advanced Optical Components
Basedon3DPolymerStructures .... 67
3.3.2 Building 3D Nanostructures by Transfer
Bonding and Sequential Layer Stacking ........ 70
3.3.2.1 Principles of Transfer Bonding and
Sequential Layer Stacking . . ........ 70
3.3.2.2 3D Structures Built by Transfer
Bonding and Sequential Layer Stacking . . . 72
3.3.2.3 Defect Modes and Process Yield
of Transfer Bonding and Sequential
Layer Stacking . . . ............. 80
3.3.3 Building 3D Nanostructures by Two
Consecutive Nanoimprints . . ............. 82
3.4 SummaryandFutureOutlook .................. 82
References ................................ 84
4 Electrochemical Growth of Nanostructured Materials ....... 89
Jin-Hee Lim and John B. Wiley
4.1 Magnetic Nanomaterials . . . .................. 90
4.2 Semiconductor Nanostructures .................. 93
4.3 Thermoelectric Nanomaterials .................. 95
4.4 Conducting Polymer Nanostructures . . ............. 96
4.5 Nanotube and Core–Shell Nanostructures ............ 98
4.6 PorousAuNanowires ...................... 99
4.7 ModificationofNanowires.................... 102
4.8 Functionalization of Nanowires ................. 104
4.9 Nanostructure Arrays on Substrates . . ............. 106
4.10 PatterningofNanowires ..................... 107
References ................................ 111
Three-Dimensional Micro/Nanomaterials Generated
by Fiber-Drawing Nanomanufacturing ................ 117
Zeyu Ma, Yan Hong, Shujiang Ding, Minghui Zhang,
Mainul Hossain, and Ming Su
5.1 Introduction ............................ 117
5.2 FiberDrawTower ........................ 117
5.3 MaterialsSelections ....................... 119
5.4 Drawing Process . . ....................... 119
5.5 SizeDesign............................ 120
5.6 Three-Dimensional Assembling ................. 122
5.7 Metallic Nanowires . ....................... 122
5.8 Semiconductor Nanowires . . .................. 123
5.9 Glass Microchannel Array . . .................. 125
5.10 DifferentialEtchingofGlasses.................. 125
5.11 GlassMicrospikeArray ..................... 126
5.12 Hybrid Glass Membranes . . .................. 128
5.13 Textured Structure of Encapsulated Paraffin Wax Microfiber . . 130
5.14 Conclusions ............................ 131
References ................................ 131
One-Dimensional Metal Oxide Nanostructures
for Photoelectrochemical Hydrogen Generation ........... 133
Yat Li
6.1 Introduction ............................ 133
6.1.1 Photoelectrochemical Hydrogen Generation . . .... 133
6.1.2 Challenges in Metal Oxide-Based PEC
Hydrogen Generation .................. 135
6.1.3 One-Dimensional Nanomaterials for Photoelectrodes . 136
6.2 Pristine Metal Oxide Nanowire/Nanotube-Arrayed
Photoelectrodes . . . ....................... 138
6.2.1 Nanowire-Arrayed Photoelectrodes . . . ........ 138
6.2.1.1 Hematite (α-Fe2O3) ............. 138
6.2.1.2 Titanium Oxide (TiO2) and Zinc
Oxide(ZnO)................. 139
6.2.1.3 Tungsten Trioxide (WO3) .......... 142
6.2.2 Nanotube-Arrayed Photoelectrodes . . . ........ 143
6.3 Element-Doped Metal Oxide 1D Nanostructures ........ 146
6.3.1 TiO2 Nanostructures .................. 146
6.3.2 ZnO Nanostructures . .................. 149
6.3.3 Hematite (α-Fe2O3) Nanostructures . . ........ 149
6.4 Quantum Dot Sensitizations . .................. 152
6.4.1 Background ....................... 152
6.4.2 Quantum Dot-Sensitized ZnO Nanowires . . . .... 153
6.4.3 Quantum Dot-Cosensitized Nanowires . ........ 154
6.4.4 Double-Sided Quantum Dot Sensitization . . . .... 155
6.5 Synergistic Effect of Quantum Dot Sensitization
andElementalDoping ...................... 158
6.6 Concluding Remarks ....................... 160
References ................................ 162
7 Helical Nanostructures: Synthesis and Potential Applications ... 167
Pu-Xian Gao and Gang Liu
7.1 Introduction ............................ 167
7.2 Semiconductor Nanohelices . .................. 168
7.2.1 ZnO Nanohelices . . .................. 168
7.2.1.1 Superlattice-Structured ZnO Nanohelices . . 168
7.2.1.2 Superelasticity, Nanobuckling, and
Nonlinear Electronic Transport
of Superlattice-Structured ZnO Nanohelices 170
Superelasticity of Superlattice-
Structured ZnO Nanohelix . . . .... 171
Nanobuckling and Fracture
of Superlattice-Structured ZnO
Nanohelix . . . ............. 172
Nonlinear Electronic Transport
of Superlattice-Structured ZnO
Nanohelix . . . ............. 174
7.2.1.3 Other ZnO Nanohelices . . . ........ 176
7.2.2 SiO2 Nanohelices . . .................. 178
7.2.3 CdS Nanohelices . . .................. 183
7.2.4 InP Nanohelices . . . .................. 188
7.2.5 Ga2O3 Nanohelices . .................. 190
7.3 Carbon-Related Nanohelices . .................. 191
7.3.1 Helical Carbon Nanoribbon/Nanocoil . ........ 192
7.3.2 Helical Carbon Nanotube . . . ............. 194
7.3.3 Tungsten-Containing Carbon (WC) Nanospring .... 195
7.4 Other Nanohelices . ....................... 197
7.4.1 Helical SiC/SiO2 Core–Shell Nanowires
and Si3N4 Microcoils.................. 197
7.4.2 MgB2 Nanohelices . .................. 198
7.4.3 SiSpirals ........................ 199
7.5 PotentialApplications ...................... 201
7.6 Summary............................. 202
References ................................ 202
8 Hierarchical 3D Nanostructure Organization
for Next-Generation Devices ...................... 205
Eric N. Dattoli and Wei Lu
8.1 Introduction ............................ 205
8.2 FluidicFlow-AssistedAssembly................. 206
8.2.1 Drop-Drying....................... 207
8.2.2 Channel-Confined Fluidic Flow ............. 208
8.2.3 Blown Bubble Film Transfer . ............. 210
8.3 Nematic Liquid Crystal-Induced Assembly . . . ........ 212
8.4 Langmuir–Blodgett Assembly .................. 213
8.5 Dielectrophoresis Assembly . .................. 215
8.6 Chemical Affinity and Electrostatic Interaction-Directed
Assembly............................. 219
8.7 ContactTransfer ......................... 221
8.7.1 Shear-Assisted Contact Printing ............ 221
8.7.2 StampTransfer ..................... 224
8.8 DirectedGrowth ......................... 226
8.8.1 Horizontal Growth . .................. 226
8.8.2 VerticalGrowth..................... 228
8.9 DeviceApplications ....................... 230
8.9.1 Thin-FilmTransistors.................. 230
8.9.1.1 Performance Considerations
forNW-orNT-BasedTFTs ......... 230
8.9.1.2 TransparentNanowire-BasedTFTs ..... 233
8.9.1.3 CNT-BasedTFTs .............. 235
8.9.2 3D Multilayer Device Structures ............ 237
8.9.3 Sensors . . ....................... 240
8.9.4 Vertical Nanowire Field-Effect Transistors (FETs) . . . 242
8.10 Conclusion ............................ 243
References ................................ 243
9 Strain-Induced, Self Rolled-Up Semiconductor Microtube
Resonators: A New Architecture for Photonic Device Applications 249
Xin Miao, Ik Su Chun, and Xiuling Li
9.1 Introduction ............................ 249
9.2 Formation Process . ....................... 250
9.3 Photonic Applications of Rolled-Up Semiconductor Tubes . . . 252
9.3.1 Spontaneous Emission from Quantum Well
Microtubes: Intensity Enhancement and Energy Shift . 252
9.3.2 Optical Resonance Modes in Rolled-Up
MicrotubeRingCavity ................. 254
9.3.3 Optically Pumped Lasing from Rolled-Up
MicrotubeRingCavity ................. 256
References ................................ 258
10 Carbon Nanotube Arrays: Synthesis, Properties, and Applications 261
Suman Neupane and Wenzhi Li
10.1 Introduction ............................ 261
10.2 Carbon Nanotube Synthesis . .................. 262
10.2.1 Arc Discharge ...................... 262
10.2.2 LaserAblation...................... 262
10.2.3 Electrochemical Synthesis . . ............. 263
10.2.4 Diffusion Flame Synthesis . . ............. 264
10.2.5 Chemical Vapor Deposition . . ............. 264
10.3 Carbon Nanotube Arrays . . . .................. 265
10.3.1 CNTA Synthesis Using Patterned Catalyst Arrays . . . 266
10.3.1.1 Pulsed Laser Deposition . . . ........ 266
10.3.1.2 Anodic Aluminum Oxide (AAO) Templates 266
10.3.1.3 ReverseMicelleMethod........... 266
10.3.1.4 Photolithography . . ............. 267
10.3.1.5 Electrochemical Etching . . . ........ 268
10.3.1.6 Sputtering .................. 268
10.3.1.7 Nanosphere Lithography . . . ........ 268
10.3.1.8 Sol–GelMethod............... 269
10.3.2 CNTA Synthesis by Other Methods . . . ........ 269
10.3.3 Horizontal Arrays of CNTs . . ............. 270
10.4 Mechanical Properties ...................... 270
10.5 Thermal Properties . ....................... 271
10.6 Electrical Properties ....................... 273
10.7 ApplicationsofCNTsandCNTAs................ 276
10.7.1 Hydrogen Storage . . .................. 276
10.7.2 CNTs as Sensors . . .................. 278
10.7.3 CNTs for Battery and Supercapacitor Applications . . 279
10.7.4 CNTs for Photovoltaic Device ............. 279
10.8 Conclusions ............................ 280
References ................................ 281
11 Molecular Rotors Observed by Scanning Tunneling Microscopy . . 287
Ye-Liang Wang, Qi Liu, Hai-Gang Zhang, Hai-Ming Guo,
and Hong-Jun Gao
11.1 Introduction ............................ 287
11.2 Solution-Based and Surface-Mounted Molecular Machines . . . 289
11.3 Single Molecular Rotors at Surfaces . . ............. 290
11.3.1 A Monomolecular Rotor in Supramolecular Network . 290
11.3.2 Gear-Like Rotation of Molecular Rotor Along
the Edge of the Molecular Island ............ 292
11.3.3 Thermal-Driven Rotation on Reconstructed
SurfaceTemplate .................... 292
11.3.4 STM-Driven Rotation on Reconstructed
SurfaceTemplate .................... 301
11.3.5 Molecular Rotors with Variable Rotation Radii . .... 303
11.3.6 Rolling Motion of a Single Molecule at the Surface . . 305
11.4 Array of Molecular Motors at Surfaces ............. 308
11.5 Outlook.............................. 310
11.6 Conclusion ............................ 311
References ................................ 311
2 Nanophotonic Devices Based on ZnO Nanowires .......... 317
Qing Yang, Limin Tong, and Zhong Lin Wang
12.1 Introduction ............................ 317
12.2 PureOpticalDevicesBasedonZnONWs............ 318
12.2.1 ZnO NW Subwavelength Waveguides
andTheirApplications ................. 318
12.2.2 OpticallyPumpedLasersinZnONWs......... 322
12.2.3 Nonlinear Optical Devices Based on ZnO NWs .... 330
12.3 OptoelectronicDevicesBasedZnONWs ............ 333
12.3.1 ZnONWUltra-sensitiveUVandInfraredPDs..... 333
12.3.2 Dye-Sensitized Solar Cells Based on ZnO NWs .... 339
12.3.3 Single ZnO NW and NW Array Light-Emitting Diodes 345
12.3.4 Electrically Pumped Random Lasing from ZnO
Nanorod Arrays . . . .................. 350
12.4 Piezo-phototronic Devices Based on ZnO NWs . ........ 352
12.4.1 Optimizing the Power Output of a ZnO
Photocell by Piezopotential . . ............. 353
12.4.2 Enhancing Sensitivity of a Single ZnO
Micro-/NW Photodetector by Piezo-phototronic Effect 354
12.5 Conclusions ............................ 356
References ................................ 356
3 Nanostructured Light Management for Advanced Photovoltaics . . 363
Jia Zhu, Zongfu Yu, Sangmoo Jeong, Ching-Mei Hsu,
Shanui Fan, and Yi Cui
13.1 Introduction ............................ 363
13.2 Fabrication of Nanowire and Nanocone Arrays . ........ 365
13.2.1 Method ......................... 366
13.2.2 Shape Control: Nanowires and Nanocones . . . .... 366
13.2.3 Diameter and Spacing Control ............. 368
13.2.4 Large-Scale Process . .................. 368
13.3 Photon Management: Antireflection . . ............. 372
13.3.1 Nanowires........................ 372
13.3.2 Nanocones . ....................... 374
13.4 Photon Management: Absorption Enhancement . ........ 376
13.4.1 Different Mechanisms .................. 376
13.4.2 Nanodome Structures .................. 378
13.5 Solar Cell Performance ...................... 383
13.6 Fundamental Limit of Light Trapping in Nanophotonics .... 384
13.7 SummaryandOutlook ...................... 388
References ................................ 389
14 Highly Sensitive and Selective Gas Detection by 3D Metal
Oxide Nanoarchitectures ........................ 391
Jiajun Chen, Kai Wang, Baobao Cao, and Weilie Zhou
14.1 Introduction ............................ 391
14.2 Highly Sensitive Gas Detection by Stand-alone 3D Nanosensors 394
14.2.1 Metal Oxide Nanowire/Nanotube Array Gas Sensors . 395
14.2.1.1 NanowireArrays............... 395
14.2.1.2 Nanotube Arrays . . ............. 399
14.2.2 Gas Sensors Based on Opal and Inverted Opal
Nanostructures . . . .................. 401
14.3 Sensor Arrays Based on 3D Nanostructured Gas Sensors .... 403
14.4 Conclusion Remarks ....................... 408
References ................................ 409
15 Quantum Dot-Sensitized, Three-Dimensional
Nanostructures for Photovoltaic Applications ............ 413
Jun Wang, Xukai Xin, Daniel Vennerberg, and Zhiqun Lin
15.1 Introduction ............................ 413
15.2 Quantum Dot-Sensitized Solar Cells . . ............. 415
15.2.1 Overview ........................ 415
15.2.2 Synthesis of Quantum Dots and Surface
Functionalization . . .................. 415
15.2.3 Quantum Dot-Sensitized Nanoparticle Films . . .... 419
15.2.4 Quantum Dot-Sensitized Nanowire Arrays . . . .... 426
15.2.5 Quantum Dot-Sensitized Nanotube Arrays . . . .... 428
15.2.6 Investigation of Charge Injection in Quantum
Dot-Sensitized Solar Cells . . ............. 432
15.2.6.1 Generation of Excited Electrons . . . .... 432
15.2.6.2 Recombination and Transportation
ofExcitedElectrons............. 434
15.3 Outlook.............................. 438
References ................................ 439
16 Three-Dimensional Photovoltaic Devices Based
on Vertically Aligned Nanowire Array ................ 447
Kai Wang, Jiajun Chen, Satish Chandra Rai, and Weilie Zhou
16.1 Introduction ............................ 447
16.2 Photovoltaic Devices Based on Nanowire Array
Integrated with the Substrate . .................. 448
16.3 Photovoltaic Devices Based on Nanowire Array
withAxialJunctions ....................... 451
16.4 Photovoltaic Devices Based on Nanowire Array
Embedded in Thin Film . . . .................. 452
16.5 Photovoltaic Devices Based on Nanowire Array
with Core–Shell Structure . . .................. 453
16.5.1 p–n Core–Shell Homojunction Photovoltaic Devices . . 453
16.5.2 Type II Core–Shell Heterojunction Photovoltaic
Devices ......................... 456
16.5.2.1 Synthesis of ZnO/ZnSe and
ZnO/ZnS Core–Shell Nanowire Array . . . 457
16.5.2.2 Structural and Optical Properties of
ZnO/ZnSe Core–Shell Nanowire Array . . . 458
16.5.2.3 Photoresponse of ZnO/ZnSe
NanowireArray ............... 461
16.5.2.4 Morphologies, Structure and Optical
Properties of ZnO/ZnS Nanowire Array . . . 462
16.5.2.5 Photovoltaic Effect of ZnO/ZnS
NanowireArray ............... 465
16.6 Summary and Perspectives . . .................. 469
References ................................ 471
17 Supercapacitors Based on 3D Nanostructured Electrodes ...... 477
Hao Zhang, Gaoping Cao, and Yusheng Yang
17.1 Supercapacitors . . . ....................... 478
17.2 Electrochemical Double Layer Capacitors Based on 3D
Nanostructured Electrodes . . .................. 479
17.2.1 Electrodes Based on Activated Carbons
and Activated Carbon Fibers: Powdered
Carbons with Disordered Pore Structures ........ 480
17.2.2 Electrodes Based on Carbon Foams, Carbon
Aerogels, and Other Monolithic Carbon:
Monolithic Carbon with Disordered Micropores .... 483
17.2.3 Electrodes Based on Template Carbons,
Graphene, Carbide-Derived Carbons,
and Hierarchical Porous Carbons: Powdered
Carbons with High Mesopore Ratios
or Reasonable PSD . .................. 486
17.2.4 Electrodes Based on Carbon Nanotubes:
Monolithic Carbons with Developed
Mesoporous Structures ................. 492
17.3 Pseudo-capacitors Based on 3D Nanostructured Electrodes . . . 497
17.3.1 Nanostructured Metal Oxide Electrode Materials . . . 498
17.3.2 Nanostructured Conducting Polymer Electrode
Materials ........................ 500
17.4 Hybrid Capacitors Based on 3D Nanostructured Electrodes . . . 502
17.4.1 Nanostructured Electrodes Based on Metal
Oxides/CarbonComposite ............... 504
17.4.2 Nanostructured Electrodes Based
onPolymers/CarbonComposites............ 508
17.5 Conclusions and Perspectives .................. 513
References ................................ 514
18 Aligned Ni-Coated Single-Walled Carbon Nanotubes
Under Magnetic Field for Coolant Applications ........... 523
Haiping Hong, Mark Horton, and G.P. Peterson
18.1 Introduction ............................ 523
18.2 Experiment ............................ 524
18.3 ResultsandDiscussion...................... 525
18.3.1 Thermal Conductivity of Nanofluids
Containing Ni-Coated Nanotubes ............ 525
18.3.2 Evidence of Magnetic Alignment of Ni-Coated
Nanotubes . ....................... 529
18.4 Conclusion ............................ 533
References ................................ 534
Index ..................................... 535
回复此楼

» 本帖附件资源列表

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

etanzhen

铜虫 (初入文坛)


顶~~~~~~~~~~~~~~~~~~~~~~~~
413楼2012-03-27 21:30:51
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 690 个回答

hpcqq

木虫 (著名写手)


关注纳米材料,下载下来学习学习!
13楼2012-02-16 16:20:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
pipi3楼
2012-02-16 14:47   回复  
五星好评  顶一下,感谢分享!
vflash4楼
2012-02-16 15:10   回复  
五星好评  顶一下,感谢分享!
vflash5楼
2012-02-16 15:12   回复  
顶一下,感谢分享!
hpcqq6楼
2012-02-16 15:22   回复  
五星好评  顶一下,感谢分享!
zhulw7楼
2012-02-16 15:50   回复  
五星好评  顶一下,感谢分享!
zhulw8楼
2012-02-16 15:51   回复  
顶一下,感谢分享!
Nano-mse9楼
2012-02-16 16:04   回复  
五星好评  顶一下,感谢分享!
Nano-mse10楼
2012-02-16 16:06   回复  
顶一下,感谢分享!
bamboo123711楼
2012-02-16 16:08   回复  
五星好评  顶一下,感谢分享!
hpcqq12楼
2012-02-16 16:17   回复  
顶一下,感谢分享!
2012-02-16 16:26   回复  
五星好评  
普通表情 高级回复(可上传附件)
信息提示
请填处理意见