24小时热门版块排行榜    

查看: 798  |  回复: 11
【奖励】 本帖被评价3次,作者ajie2596增加金币 1.25
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

ajie2596


[资源] 核能博物馆!天天更新!带你进入微观世界,感受震撼的奇妙!

1、原子学说的起源
(1)中国古代学者的观点
      我们生活的这个世界是由各种各样的物质组成的。人们自然会问,物质是由什么构成的呢?

  公元前五世纪,我国墨翟曾提出过物质微粒说,他称物质的微粒为“端”,意思是不能再被分割的质点。

  但在战国时代,有一本著作《庄子·天下篇》中却提到了物质无限可分的思想:“一尺之槌,日取其半,万世不竭”。意思是说,一个短棍今天是一尺,明天取一半,余二分之一尺,后天取一半,余四分之一尺,以此类推,永远没有尽头。当然,这里并没有提出,也不可能提出用什么方法分割的问题。但在那个时代,我国古代学者就能用思辩的方法来这样提出问题,是难能可贵的。
(2)古希腊哲人的原子观
     公元前四世纪,希腊人德谟克利特提出了“原子”的概念,也认为这是一种不能再被分割的质点。后来伊壁鸠鲁又把这一概念大大地推进了一步。

  罗马人卢克莱修(约公元前99-55年)曾用诗句阐明德谟克利特和伊壁鸠鲁的原子观点:
  物体或者说物质要素,
  都是由原始粒子集合而成;
  虽有雷霆万钧之力,
  要破坏物质要素也不可能。
  ……

  原始物质,由此可见,是既结实又单纯,
  由极小粒子之力牢固抱紧,
  但又不是粒子的堆集,
  其特征在任何情况下是无穷地单纯。
  不能从它夺取什么,
  也不许缩小其本性,
  原始物质,世世代代,永远长存。
  ……

  原始物质,
  在无边无际的真空,
  当然不会静止,
  反而被迫不断地作各种各样的运动。
  ……

  从这里可以看出,古代的原子论者认为:一切物质都由最小粒子的原子组成,原子是不可分割的;原子是客观的、物质性的存在,它是永恒地运动着的。

  德谟克利特和他的老师留基伯共同创立了古希腊的原子论,认为一切事物的本源,是原子和虚无的空间。按照这种想法,人的感觉器官所感觉到的自然界物质的多样性,都是由原子的多种排列和各种不同的结合方式产生的。德谟克利特说:“根据现实的感觉,有甜与苦、热与冷、芳香和色彩的存在。但在本质上,仅有原子与空间的存在。我们认为似乎是本体的每一样物体,仅仅只有原子与空间才是真正的实质”。德谟克利特用原子论观点分析了一系列物理现象。他认为,无论是物体从一种状态过渡到另一种状态,从固体过渡到液体或气体以及相反的变化,还是物体的味道、颜色等等,并不是由于物体内部成分的改变,而是取决于原子的形状、大小、排列的变化和结合方式。
(3)原子观点复活
      古代对物质结构奥秘的探索,只能靠想象,靠思考。那时自然科学还没有从哲学中分离出来,原子只是哲学上的猜想,没有条件靠精密的实验加以证实。尽管原子说是一种很深刻的见解,但终究还是没有科学论证的一种猜测。至于一种物质能否转变为另一种物质,在那时候,科学技术水平还没有达到相应的高度,物质的内幕在理论上没有揭开,所以只不过是想象而已。

  原子是不是真的存在呢?原子是不是构成物质大厦的“基本砖石”呢?一种原子是否能转变成另一种原子呢?人类为探索这些问题,走过了极其漫长的道路。

  德谟克利特的原子学说,在整个封建时代,没有人去证实它。当时,化学为了适应封建主的特殊要求,走进了炼金术和炼丹术的泥坑,致力于寻求点石成金和长生不老的秘方。不仅如此,它还受到了封建的神学思想的束缚。当时,科学由古代社会的图书馆和科学院搬进了中世纪的教堂。于是,对“圣典”条文的研究代替了对自然的研究。从物质结构的争论,转移到另一种争论,去争论什么一个针尖里能住得下几个天使,以及天使吃些什么东西等等。

  就在这样的历史条件下,原子学说在长达二十个世纪的时期里竟为人们所遗忘。

  一直到18世纪中叶,俄国人罗蒙诺索夫(1711~1765)才把原子观点复活起来,1808年,英国人道尔顿又加以进一步的总结。这样就结束了化学史上的愚昧的炼金时代,保证了化学向前健康的迅速发展。因此,化学中的新时代应该说是从原子论开始的。

  这个时代的原子论的基本内容有如下几点:
  (1) 物质是由最小的微粒——原子组成的。原子就是不能再分的最小微粒。
  (2) 同种的原子在重量、大小和其他性质上相同。
  (3) 一切原子都处在不停地运动的状态。
(4)原子可分
      18~19世纪,原子学说处在创立和发展的阶段,它解释了不少物理、化学现象。但是到了19世纪后期,由于科学的进一步发展,发现了许多新的现象,为旧的原子学说所无法解释,因而暴露出严重的缺陷。

  这是任何学说的共同发展规律。因为客观事物的本质并不是一下子就会被人们全部加以认识的,而是在人们的不断实践中,被逐渐地认识到的。在更广泛和更深入的实践中,原来的理论就逐渐暴露出缺点,这是很自然的事情。不懂得这个道理的人,面对这种现象,往往十分困惑,甚至很不高兴。认为科学进入了死胡同,再也无法前进。而懂得这个道理的人,面对这种现象,则会满怀喜悦,认为这是新希望的曙光,并且朝着曙光往前探索,修改原来的理论,开辟出一个科学的新世界来。

  原子真是不可再分割的吗?

  当人们着手研究元素以及由它所形成的单质和化合物的性质为什么会随着元素原子量的递变而有周期性的变化,以及同族元素性质为什么相似的原因时,对“原子不可分割”论产生种种疑点:

  元素和元素间为什么有这样紧密的联系呢?如果每个原子都是光秃秃的一颗不可分割的最小微粒,各自独立,互不相关,那么元素间还有什么联系?

  合理的分析虽说是当时很难被有的科学家所接受,而又不得不予以承认的,那就是否定“原子不可分割”论,相信原子不是不可分割,原子有着复杂的结构;后来元素周期律的发现表明原子还是可以分割的。

  元素周期律开始动摇了原子是“不可分割的”这种根深蒂固的信念,而使这种信念受到摧毁性打击的则是放射性现象的发现。

[ Last edited by ajie2596 on 2007-2-27 at 16:13 ]
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

ajie2596


镭及人工放射性发现

镭及人工放射性发现
(1)玛丽·居里
玛丽·居里,即著名的居里夫人,与他的丈夫皮埃尔·居里一起,夫妇俩共同就贝克勒耳首先发现的放射性现象进行研究,先后发现钋和镭两种天然放射性元素,为原子时代的开始,作出了重大贡献。

  居里夫人在科学上的刻苦自励、坚韧不拔,生活上的不畏挫折、艰苦朴素,成为后代人敬仰和传颂的佳话。

  玛丽生长在波兰一个诚实的农民家庭。她的父母后来离开了农业劳动,从事教育工作,父亲是一位中学的数学和物理教员,母亲做过小学校长,弹得一手漂亮的钢琴。玛丽继承了父亲的才智和母亲的灵秀。

  玛丽中学毕业时以优异成绩获得了金质奖章,全家人都为她高兴,她的父亲更感到由衷的欣慰。

  19世纪的波兰大学不收女学生,这使玛丽和她的另一个姐姐很犯愁。因为如果出国求学,需要一笔很大的开支。“有办法了!”一天,玛丽在月光下兴奋地对姐姐说:“是这样,你把我们俩省下来的钱都带上,先去巴黎。我在这儿做家庭教师,把挣来的钱再给你寄去。等你毕业有了工作再帮助我。若是我们仍旧各自奋斗,那就谁也无法离开这里。”

  姐姐高兴地拥抱着妹妹,眼里闪着激动的泪花:“玛丽,你真愿意帮助我吗?你的天资这样好,应该你先出去,也许很快就会功成名就,为什么先让我走呢?”

  “因为你是20岁,我才17岁。”

  就这样,姐妹分手了。

  姐姐从巴黎寄来了信,妹妹从华沙寄去了钱。为了支持姐姐读书,玛丽有时连一张邮票都买不起。后来,玛丽也到了巴黎。
(2)天作之合
玛丽在巴黎求学期间,一个波兰籍物理教授为物理学家皮埃尔·居里做了牵线搭桥的人,用中国话说,为玛丽和皮埃尔做了“红娘”。

  皮埃尔原是一位对女性抱有成见的人,在他的日记中曾这样写道:“女人比我们更加留恋生命,天才的女人是少见的。”

  皮埃尔与玛丽第一次见面时,漫不经心地同她握手,伸过来的是一只秀丽纤巧的小手,手指上留有硫酸灼伤的斑痕。

  对于年轻有为的科学家皮埃尔,玛丽闻名已久。然而,第一次会见,除了欣喜之外,在这位27岁的姑娘心中还激起了一道波澜。

  当晚,皮埃尔和玛丽都失眠了,皮埃尔找出了自己的日记本,把上面关于女性的偏见涂抹得一干二净。一年之后,两人的感情终于找到了共同的节奏,皮埃尔在给玛丽的信中写道:“如果我们能够生活在一起,那该有多好啊!”

  1895年,玛丽和皮埃尔在充满诗情画意的夏天里结婚了。玛丽的婚礼没有白礼服,没有金戒指,也没有按照当地的习俗到教堂去举行仪式。亲友们来祝贺他们的结合,这对新婚夫妇用亲友的馈赠,购买了两辆新自行车。

  理化学校的校长同意玛丽在皮埃尔的实验室里继续进行她的钢磁化性能研究。在那些日子里,玛丽白天做八小时的科学研究,回家料理两三小时的家务,学会了煮牛肉和煎土豆片。晚饭后,她坐在一张没有上漆的白木桌子的一端,在煤油灯下准备着大学毕业生的职业考试。皮埃尔坐在这张桌子的另一端,准备明天要上的课。

  婚后第三年,玛丽生了一个女儿,玛丽下决心把对科学的热爱和做母亲的责任同时担负起来。她每天给女儿喂奶、换尿布。幸好玛丽的公公给了她很大的帮助。这位老人细心地看管这个小女孩,使玛丽有较多的时间从事她喜爱的科研工作。
(3)玛丽的设想
玛丽看到一份报告,是法国物理学家贝克勒耳写的,内容是关于他发现铀矿石会放出看不见的射线,而使底片感光的研究。这真是一种奇妙的现象。这种射线是从那儿来的?具有什么性质?这是一个好题目,还没有人做过详细的研究,正可写一篇绝好的博士论文!

  玛丽的想法得到了皮埃尔的支持,于是她便立刻动手,搜罗了一些铀矿石,一个皮埃尔和他的哥以前所发明的压电石英静电计和测电器,一个电离室,此外便是一些瓶子。可是得找一个地方来从事她的试验呀!经皮埃尔多次向理化学校校长请求的结果,同意让他们使用一间空着的小贮藏室。

  这间房子阴暗、潮湿,对灵敏的测电器是极为不利的。不过玛丽倒觉得无关紧要,她首先是测量射线使空气电离的力量。多次的实验证明:射线的强度和矿石中铀的含量成比例,和外界的光照、温度无关。这结果已使当时的物理学界震惊。

  玛丽想来想去,觉得这种独立的射线现象一定是一种原子的特性。铀具有这种特性,别的元素难道不具备这种特性吗?玛丽把能弄到的元素或它的化合物都逐个儿检查一番。结果,她发现另外一种元素钍的化合物也会自动发出射线。玛丽认为:必须给这种独立的放射现象另起一名称,就叫做“放射性”。

  玛丽简直被放射性迷住了。由于好奇心的驱使,她几乎检查了所有的盐类、化合物、矿物质、软的、硬的以及各种奇形怪状的东西。她明白了:大凡含有铀或钍的物质,都会有放射性。

  玛丽就专门研究那些有放射性的矿物,她发现,有一种铀沥青矿石的放射性,比其中照铀的含量算出来的应有的放射性大得多。难道是仪器不准,或是操作有毛病?可是反复几十次,证明测量没有错。这种过度的放射性是哪儿来的呢?玛丽想:在这种矿石中,一定含有一种放射性比铀或钍强得多的新元素。
(4)共同奋斗
玛丽的惊人发现使皮埃尔也感到惊奇,他决定暂停止他自己的结晶学方面的研究,用他的全部力量和玛丽一起研究这种神奇的新元素。

  这种强放射既然是由一种新元素所产生,就一定要把它找出来。可是铀矿石的成分早就化验过了,并没有发现什么未知物质。由此可知,这种新元素在矿石中的含量一定非常非常少,以致于当时所用的分析方法都发现不了它。他们悲观地估计,至多不超过百分之一。

  玛丽和皮埃尔用化学的方法,把这种矿石的各种成分分开,然后个别测量它们的放射性。经过反复的搜查,发现放射性主要集中在两种化学成分里,这是两种不同的新元素存在的象征。他们认为,现在已经可以宣布发现了这两种元素之一。

  皮埃尔向玛丽说:“你给它起个名字吧!”

  玛丽的祖国波兰当时已经不存在了,她喃喃地说:“为了纪念我的祖国,把它叫做‘钋’(钋是波兰的意思)吧!”

  玛丽把这一发现,写在1898年7月给理科博士院的报告里。同年12月,在另一份报告里写道:“还发现另一种有强放射性的新元素,它放出的射线强到了是纯铀的九百倍。我们提议叫它‘镭’(镭是放射的意思)”。

  这个发现使当时的物理学界大为惊奇,有人高兴,也有人怀疑。也有人毫不客气地提出来:“你说你发现了新元素,可是我们没有看见,你能把它放在瓶子里,用酸来化验它?它的原子量是多少?把新元素拿给我们看看,我就相信。”

  为了把钋和镭指给不相信的人看,玛丽和皮埃尔决心要把它提炼出来。
(5)艰苦工作
根据以往的试验,钋是一个不稳定的东西,提炼起来比较困难,他们决定先提取镭。可是手头的沥青铀矿石太少了。按照他们当时作百分之一含量的“悲观”估计,要想提取看得见的一点镭,估计至少也得一吨矿石。哪儿去弄那么多原料呢?过去的研究全是花他俩自己的钱,政府并没有给他们一文经费。一个矿上正在用这种矿石提炼制玻璃用的铀盐,剩下的残渣就作为废物不要了。这些废物中一定也可提炼出镭来。

  玛丽雇了一辆运煤的马车搬运。残渣像小山一样地堆在矿口附近一片松林里。搬运工人把这些废物装进了几十个大麻袋里,拉到玛丽在学校的那间小工作室前面。残渣运到的那一天,玛丽高兴极了。她立刻解开口袋,双手捧起那些灰褐色的东西,还夹杂着不少松针和泥土。玛丽仿佛看到,镭就在里面。

  那么多大麻袋只好卸在露天。得找个地方来进行提炼镭的试验呀!皮埃尔去找理化学校的校长,请求他给一间屋子。校长一向是支持皮埃尔工作的,可是他摊着双手表示:哪儿有空屋子呢?

  玛丽原来的小工作室对面有一个院子,院子的一侧有一个小木板屋,原来是大学的医学院当解剖室用的。现在这间屋年久失修,玻璃天窗漏雨,板壁破裂透风,连停放死尸都认为不合适了,很久没有人愿意使用这个破屋子。

  他们在那木屋里忙碌起来,没有什么大型的器械,只有坩埚、烧杯、曲颈甑、大大小小的瓶子,还有两双手。他们把矿石残渣一公斤一公斤地加热、蒸干、结晶。这种工作是在院子里的空地上做的,因为有难闻的气味和烟雾。玛丽身穿粗布衣服,沾满了灰尘和酸渍,手拿一根大铁棍,一连几个小时地搅动着呛人的溶液。她的头发被风吹得飘起来,眼睛和咽喉刺激得红肿。皮埃尔则在木屋里专心做他的试验工作,因为他善于摆弄仪器。

  下雨的时候,只好匆匆忙忙地把这些东西搬到木屋里来,把门窗打开,好让那些烟散出去。碰到下雨天,雨水透过天棚一滴一滴地落下来。他们只好用粉笔在地上划出记号,把仪器放在不滴水的地方。冬天,那个铁炉子尽管烧得发红,也只有离炉子很近的地方才感到有些热,稍远一点就如冰窖。

  偶尔有一些物理或化学方面的同行来看看镭提炼得怎么样了。理化学校一个实验室工人叫伯弟,出于个人的热心,自愿给他们帮些忙。另一个青年化学家安德烈·德比尔纳对提炼镭很感兴趣,常常到木屋来看他们。

  玛丽一锅一锅地提炼着这些谁也不要的东西,一吨残渣用完了,又去运来了许多。一次又一次的蒸浓、结晶,可是所得的非常少。他们当初所作的悲观估计只有含量为百分之一,其实实在是太过于乐观了,看来最多只有百万分之一。这种无休止的奋斗,使皮埃尔产生了暂停这项工作的念头。可是玛丽非常坚决,她把全部体力劳动都承担起来,到了晚上简直筋疲力尽。她独自一个人就是一座工厂,这使皮埃尔大为感动,也下决心干到底。这种枯燥的工作日继以月,月继以年。
(6)镭的出现
从宣布镭存在的那天起,时间已过去三年零九个月了。他俩经过漫长的艰苦奋斗,终于从三十多吨残渣里,提炼出0.1克的镭,并且测定了它的原子量。人们可以想象,在这漫长的岁月里,有多少个艰苦劳动的白天,有多少个不可名状的焦心期待的黑夜。这需要有钢铁般的意志,还要有坚韧不拔的毅力。

  那天晚上九点钟,玛丽坐在她四岁的小女儿的床边,一直等到这小女孩发出了均匀的鼾声。她站起身来,轻轻地走下楼去,手里拿着针线,坐在皮埃尔对面,缝着小女儿的衣服。可是她老是安不下心来,总记挂着刚刚提炼出来的镭。她对皮埃尔说:“我们到那儿去一会好不好?”

  皮埃尔的心情和她一样,他们立刻穿上外衣,出了门,挽臂步行。谁也没有说话,默默地穿过街道,进入那个熟悉的院子。皮埃尔把钥匙插入锁孔,听到那扇板门转动时轧轧作响过几千次的声音。

  在漆黑的木屋里,一个放在桌上的极小的瓶子里发出闪烁的、淡蓝的荧光。玛丽和皮埃尔没有点灯,她俩坐在木凳上,身体向前倾斜,久久地望着这神秘的微光。那就是人们一再要求他们拿出来看看的,新发现的放射性镭所发出来的。

  他们在科学的道路上携手共进,攻克了一道又一道难关,终于在1902年从沥青矿渣中提炼出了现代物理化学中最宝贵的放射性元素——镭。从而揭开了原子时代的序幕,成为现代科学史上一项伟大发现。
(7)长女伊伦
居里夫妇的长女伊伦,从呱呱坠地起,她就得到了父母的爱抚。她的妈妈玛丽·居里,既是严谨的学者,又是慈爱、温存的母亲。玛丽即使在工作最忙的时候,也要挤出时间照料孩子。

  当伊伦到了入学年龄时,玛丽·居里对她施行了一种不循惯例的教育。她认为小孩子在学校里太累了,儿童正是长身体、长知识的年龄,把她们整天关在空气污浊的教室里,消耗过多的精力是野蛮的。她对孩子教育的原则是:孩子要学得少些,但要学得好些。玛丽的这种想法得到了朋友们的支持和赞赏,一群有才华的学者都把自己的子女聚集在一起,实施这种新的教育方法。

  当时包括伊伦在内共有十来个孩子,每天都去听一种课程,由特邀的老师讲授。这种教育方法既使孩子们兴奋,又使孩子们感到有趣。比如,第一天,孩子们听化学课,第二天,又听另一个教师的数学课。他们还学各种语言,自然科学,雕塑和绘画。最令人兴奋的是听玛丽·居里的物理课。

  玛丽利用星期四下午给年幼的学生们讲初步的物理知识,她把书本上抽象而枯燥的概念变成了生动而有趣的语言。玛丽还把她对科学的热爱和严格的治学作风都传授给伊伦和其他孩子们。就这样,当伊伦还是一个几乎不会写不会读的孩子时,就接受了母亲和其他学者的教诲。可以说,伊伦从小就受到了第一流的科学教育。

  伊伦所受的这种特殊教育一直继续了两年,直到玛丽·居里及其他孩子的父母实在忙得无暇顾及时,她才被送进一所学校。

  在那个初春阴冷的日子里,居里的幸福家庭遭受了巨大的不幸。1906年4月19日,当伊伦还不满9周岁时,她的父亲皮埃尔·居里在巴黎街头不幸被马车辗死了。深深的悲痛笼罩着居里全家。玛丽失去了志同道合的亲密伴侣,伊伦和妹妹失去了敬爱的父亲。

  年幼的伊伦是个懂事的孩子,她常常依偎在妈妈的怀抱里,安慰悲伤的母亲。父亲的不幸去世给小伊伦留下的印象太深了,她唯恐母亲再发生什么不幸。她常跟随母亲去实验室,依伴在母亲的身旁。也正是在这里,伊伦渐渐对物理及化学实验发生了浓厚的兴趣,长大后她成了母亲的助手。

  约里奥是同伊伦一起在实验室里工作的同事。玛丽·居里虽然失去了忠实的伴侣皮埃尔,而现在又有了两个助手。

  伊伦与约里奥结婚后在生活和工作中相敬相助。1934年,他们用阿尔法粒子轰击铅、硼、镁,也就是通过核反应的方法由人工制造出放射性同位素,从而首次产生了人工放射性物质。

  1939年,差不多在同一个时期里,约里奥·居里、费米、西拉德、玻尔等分别完成了铀链式反应方面的实验。共同为原子能的释放作出了贡献。

  伊伦与约里奥培养了不少优秀的科学家,中国的钱三强,即发现铀三分裂的核科学家,中国放射化学家杨承宗等都是他们的学生。

  约里奥·居里还是著名的国际和平战士。1951年,夫妇俩得知杨承宗准备离开法国回国参加建设,特地约见杨,对他说,你回国后,请转告毛泽东主席,你们要反对原子弹,你们必须要有原子弹。原子弹也不是那么可怕的。原子弹的原理也不是美国人发明的。约里奥·居里夫人还将亲手制作的10克含微量镭盐的标准源送给杨承宗,作为对中国人民开展核科学研究的一种支持。
7楼2007-03-04 08:38:08
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 12 个回答

ajie2596


第二讲!!

(5)道尔顿的原子论
      物质是由原子构成的这一猜想,虽然早就提出来了,但一直到了18世纪,尤其是18世纪后半期至19世纪中期,工业兴起,科学迅速发展,人们通过生产实践和大量化学、物理学实验,才加深了对原子的认识。

  把原子学说第一次从推测转变为科学概念的,应归功于英国一个教会学校的化学教员,他就是道尔顿(1766~1844)。

  道尔顿首先研究了法国化学家普鲁斯特于1806年发现的有趣结论:参与化学反应的物质质量都成一定的整数比(定比定律),例如1克氢和8克氧化合成9克水,假如不按这个一定的比例,多余的就要剩下而不参加化合。道尔顿自己又发现:当两种元素所组成的化合物具有两种以上时,在这些化合物中,如果一种元素的量是一定的,那么与它化合的另一种元素的量总是成倍数地变化的(倍比定律)。

  为什么元素间的化合总是成整数和倍数的关系呢?道尔顿丰富的想象力,给他以激励。他感到,这一事实暗示物质是由某种可数的最小单位构成的。于是,道尔顿把这些事实总结概括加以分析,提出了关于原子的著名论断:物质是由具有一定质量的原子构成的;元素是由同一种类的原子构成的;化合物是由构成该化合物成分的元素的原子结合而成的;原子是化学作用的最小单位,它在化学变化中不会改变。

  道尔顿的原子论同过去的原子论相比,已有雄厚的科学依据。但是,道尔顿的原子论提出以后,在新的实验事实面前又出现了一个新的矛盾。

  1809年,法国科学家盖·吕萨克发现,在气体的化学反应中,在同温同压下参与反应的气体的体积成简单的整数比;如果生成物也是气体,它的体积也和参加反应气体的体积成简单的整数比(气体反应定律)。例如,两公升的氢和一公升的氧化合时,生成两公升的水蒸汽。盖·吕萨克想,如果不论哪种气体在同温同压下,在相同体积内部含有相同的原子数,不就可以用道尔顿的原子论解释气体反应定律了吗?
(6)原子分子学说
  可是道尔顿发现,这项假定如果正确,在上述实例中,两个氢原子和一个氧原子应当生成两个“水原子”(后来称水分子),这样,一个“水原子”中不就只能含有半个氧原子了吗?为了解决这一矛盾,1811年意大利科学家阿伏加德罗在原子论中引进了“分子”的概念。他认为,构成任何气体的粒子不是原子,而是分子。单质的分子是由同种原子构成的;化合物的分子是由几种不同的原子构成的。在上述例子中,氢的分子是由两个氢原子构成的,氧的分子是由两个氧原子构成的,而水的分子是由两个氢原子和一个氧原子构成的。

  这样,经过不同国家的许多人的努力,才逐步地建立了原子分子学说。

  这个学说认为:(1)物质是由分子组成的,分子是保留原物质性质的微粒。例如,糖溶解在一杯水里,糖分子遍及全杯水,水就有了甜味。(2)分子是由原子组成,原子则是用化学方法不能再分割的最小粒子,它已失去了原物质的性质。例如,我们平时食用的食盐(氯化钠)的分子是由钠原子和氯原子组成的,氯是有毒的,显然食盐的性质与氯和钠的性质截然不同;另一方面,完全无害的元素碳和氮,组成的化合物却可以是剧毒的气体氰(CN)化物。

  这个原子分子学说比以前的原子学说又有了很大进展。过去,在原子和宏观物质之间没有任何过渡,要从原子推论各种物质的性质是很困难的。现在,在物质结构中发现了分子、原子这样不同的层次。因而我们可以认为,人们对于物质是怎样构成的问题,认识已经接近物质的本来面貌了。
(7)布朗运动
  分子是否确定有呢?实践终于证明了分子的存在和分子的运动。

  1827年英国植物学家布朗首先在显微镜下观察到,水中的小花粉在不停地作不规则的运动。仔细观察,可以发现任何悬浮在液体或气体中的非常小的微粒,都永远处于无休止的没有规则的运动状态之中。这个悬浮的微粒愈小,它的运动就愈激烈;温度愈高,这种运动也愈激烈。后来人们把这种运动叫布朗运动,把像小花粉那样小的微粒叫布朗微粒。布朗运动是永不休止的,它不受外界因素的影响,完全是物质内部运动的反映。

  布朗运动说明了什么问题呢?原来,这种运动就是由液体的分子运动引起的。由于液体的分子每时每刻都在作不规则的热运动,这些分子撞击布朗微粒,就引起了布朗微粒的运动。如果悬浮物的颗粒太大,则在每一瞬间撞击到这个大颗粒上的分子数目就太多了,致使这些撞击作用基本上相互抵消了,大颗粒就会保持不动。当悬浮粒小到一定程度时,碰撞到小颗粒上的分子就不那么多,就会从某一个方向出现分子撞击的不平衡,使小颗粒发生运动。布朗颗粒体积愈小,发生撞击的不平衡的可能性愈大,布朗运动就愈急剧。另一方面,温度愈高,分子无规则运动的速度就愈大,分子撞击引起的布朗运动也随之加剧。由于对布朗运动现象的观察和了解,使得人们深入理解了布朗运动的本质。因此证实了分子的存在和分子运动的存在。
(8)看到原子

  我们熟悉的自然界的物质有三态:固态、液态和气态。可以这样理解:固体的分子排列得比较整齐和紧密,分子运动的范围相对来说是很小的;液体分子的排列就自由些和松散些,因此分子运动的范围就比较大些;气体的分子,表现得最自由,它们往往或多或少地独立运动,与其它的分子无所牵连。永无休止的分子的剧烈运动足以说明气体的性质。后来计算出在一秒钟内,气体中的一个分子和其它分子的碰撞次数就达50余亿次。气体分子的运动,就总体来说,它全是不规则的运动。

  从19世纪中期,开始了气体分子的运动论的研究。这一研究取得了巨大的成功,科学家们根据气体分子运动论确定了原子的质量和直径。各种原子的大小不同,它们只有1亿分之一至1亿分之四厘米。50万个原子只能排满头发丝细的距离,500万个原子排成一行,也只不过是在我们这里的一个小句号的范围里。原子的重量只有1千万亿亿分之一克。一杯水的重量与其中的一个原子的重量相比,约等于地球的重量与其上的小块砖头的重量之比,可见原子是何等的微小。

  长期以来,人们并没有用肉眼看见过原子。原子,就是在高倍显微镜下,在近代电子显微镜下也很难看见。但是,人们对原子的客观存在不再怀疑。这是为什么呢?因为,发展科学和检验真理的唯一可靠的标准是实践。人类的大量的生产实践,间接地证实了原子的存在,用原子分子学说可以准确无误地解释和指导我们的生产实践。

  一直到1970年,才有一位美国科学家报道说,他借助扫描电子显微镜第一次观察到了单个的铀和钍的原子。1978年2月,日本一位科学家宣布,他们用具有超高度分辨能力的电子显微镜拍摄了世界上第一张原子的照片,看到了几种原子的图像。

  2001年,中国科学家汪正民用新的实验技术,在国际上首获原子体系(铷原子)不同电子云影相。
(9)纽兰兹的八音律
  人类对于化学元素的定性分析,特别是定量分析进行了长期的实践。

  根据道尔顿提出的原子观点,人们对元素有了新的认识,认为每一种元素都是由特定的原子组成的;不管这一种元素的数量多少,它都是由原子组成的。这种元素与另一种元素之所以不同,是因为它们的原子的性质不相同。一种原子与另一种原子的最基本的物理性质的区别,就是原子的重量不同。

  1862年,法国地质学家坎古杜瓦首先提出了元素随着原子量的变化,其化学性质呈现周期性变化的问题。1864年德国化学家迈耶,按原子量递增顺序制定了一个“六元素表”。这个“六元素表”,1865年,英国化学家纽兰兹按原子量递增顺序,将已知元素作了排列。他发现,到了第八个元素就与第一个元素性质相似,亦即元素的排列每逢八就出现周期性。

  纽兰兹从小受母亲的影响,爱好音乐,觉得这好像音乐上的八个音阶一样重复出现,于是自己把它称为“八音律”,画出了“八音律”表。1866年3月当他在伦敦化学学会发表这一观点时,得到的却是嘲笑和讽刺;他的有关论文也被退稿。七年以后,他的论文又被拒绝发表。虽然纽兰兹的“八音律”表存在着缺点和不成熟的地方,但他发现了元素的性质在排列上有周期性这一研讨方向是完全正确的,而且在这个正确的方向上向前迈进了一大步。一直到18年以后,即在门捷列夫的元素周期表的重要性得到普遍承认以后,纽兰兹的论文才得以发表,英国皇家学会才给他颁赠了勋章。

  事实上,在1869年,德国的迈耶和俄国的门捷列夫几乎同时发现了元素周期律。一项科学技术的发现或发明,同时被几个人在不同地方各自独立地完成,这在科学史上屡见不鲜的。因为科学是反映客观规律的,科学技术的发现和发明绝不是孤立的现象,它是前人研究成果的继续和在此基础上的突破,是时代的使命,是科学技术发展到一定阶段时的必然结果。如果这项科学成果,只有某个人能发现,而另外的人不能够发现,那么就不成其为反映客观规律的科学了。只不过科学发现的时间略有早晚而已。
(10)门捷列夫
  俄罗斯化学家门捷列夫(1834~1907),生在西伯利亚。他从小热爱劳动,喜爱大自然,学习勤奋。

  1860年门捷列夫在为著作《化学原理》一书考虑写作计划时,深为无机化学的缺乏系统性所困扰。于是,他开始搜集每一个已知元素的性质资料和有关数据,把前人在实践中所得成果,凡能找到的都收集在一起。人类关于元素问题的长期实践和认识活动,为他提供了丰富的材料。他在研究前人所得成果的基础上,发现一些元素除有特性之外还有共性。例如,已知卤素元素的氟、氯、溴、碘,都具有相似的性质;碱金属元素锂、钠、钾暴露在空气中时,都很快就被氧化,因此都是只能以化合物形式存在于自然界中;有的金属例铜、银、金都能长久保持在空气中而不被腐蚀,正因为如此它们被称为贵金属。

  于是,门捷列夫开始试着排列这些元素。他把每个元素都建立了一张长方形纸板卡片。在每一块长方形纸板上写上了元素符号、原子量、元素性质及其化合物。然后把它们钉在实验室的墙上排了又排。经过了一系列的排队以后,他发现了元素化学性质的规律性。

  因此,当有人将门捷列夫对元素周期律的发现看得很简单,轻松地说他是用玩扑克牌的方法得到这一伟大发现的,门捷列夫却认真地回答说,从他立志从事这项探索工作起,一直花了大约20年的功夫,才终于在1869年发表了元素周期律。他把化学元素从杂乱无章的迷宫中分门别类地理出了一个头绪。此外,因为他具有很大的勇气和信心,不怕名家指责,不怕嘲讽,勇于实践,敢于宣传自己的观点,终于得到了广泛的承认。
(11)元素周期律
  元素周期律揭示了一个非常重要而有趣的规律:元素的性质,随着原子量的增加呈周期性的变化,但又不是简单的重复。门捷列夫根据这个道理,不但纠正了一些有错误的原子量,还先后预言了15种以上的未知元素的存在。结果,有三个元素在门捷列夫还在世的时候就被发现了。1875年,法国化学家布瓦博德兰,发现了第一个待填补的元素,命名为镓。这个元素的一切性质都和门捷列夫预言的一样,只是比重不一致。门捷列夫为此写了一封信给巴黎科学院,指出镓的比重应该是5.9左右,而不是4.7。当时镓还在布瓦博德兰手里,门捷列夫还没有见到过。这件事使布瓦博德兰大为惊讶,于是他设法提纯,重新测量镓的比重,结果证实了门捷列夫的预言,比重确实是5.94。这一结果大大提高了人们对元素周期律的认识,它也说明很多科学理论被称为真理,不是在科学家创立这些理论的时候,而是在这一理论不断被实践所证实的时候。当年门捷列夫通过元素周期表预言新元素时,有的科学家说他狂妄地臆造一些不存在的元素。而通过实践,门捷列夫的理论受到了越来越普遍的重视。

  后来,人们根据周期律理论,把已经发现的100多种元素排列、分类,列出了今天的化学元素周期表,张贴于实验室墙壁上,编排于辞书后面。它更是我们每一位学生在学化学的时候,都必须学习和掌握的一课。

  现在,我们知道,在人类生活的浩瀚的宇宙里,一切物质都是由这100多种元素组成的,包括我们人本身在内。

  可是,化学元素是什么呢?化学元素是同类原子的总称。所以,人们常说,原子是构成物质世界的“基本砖石”,这从一定意义上来说,还是可以的。然而,化学元素周期律说明,化学元素并不是孤立地存在和互相毫无关联的。这些事实意味着,元素原子还肯定会有自己的内在规律。这里已经蕴育着物质结构理论的变革。

  终于,到了19世纪末,实践有了新的发展,放射性元素和电子被发现了,这本来是揭开原子内幕的极好机会。可是门捷列夫在实践面前却产生了困惑。一方面他害怕这些发现“会使事情复杂化”,动摇“整个世界观的基础”;另一方面又感到这“将是十分有趣的事……周期性规律的原因也许会被揭示”。但门捷列夫本人就在将要揭开周期律本质的前夜,1907年带着这种矛盾的思想逝世了。

  门捷列夫并没有看到,正是由于19世纪末、20世纪初的一系列伟大发现和实践,揭示了元素周期律的本质,扬弃了门捷列夫那个时代关于原子不可分的旧观念。在扬弃其不准确的部分的同时,充分肯定了它的合理内涵和历史地位。在此基础上诞生的元素周期律的新理论,比当年门捷列夫的理论更具有真理性。
2楼2007-02-28 08:32:37
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

nkfaith

木虫 (正式写手)


呵呵 顶一下
引用回帖:
Originally posted by ajie2596 at 2007-3-1 12:54 PM:
没人看啊!

4楼2007-03-01 17:53:06
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

ajie2596


第三讲!原子世界发出的信息

谢谢楼上的!

原子世界发出的信息


1、1、X射线的发现
(1)科学没有终极理论
到了19世纪末期,物理学已能令人满意地勾画出自然现象及其相互关系的图像,并且似乎达到了相当完善的程度。看来,一切都好像很适合一般的力学概念,甚至包括电、磁、光等现象。许多人认为牛顿的物理学是无所不包、无所不能的,它能“概括”宇宙中最大的物体运动和最小的原子运动。
  许多物理学家们觉得,他们已经完成了他们应该做的全部工作。当时有一位著名的科学家在1893年发表演说,认为物理学的所有伟大发现可能都已完备。他把科学的发展状况及历史,精心地编制成纲目。他说:以后的物理学家们除了重复及改良过去的实验,使原子量或一些自然常数增加些小数点位数以外,将再也不会有什么事可做了。这种言论在当时来说,是有一定代表性的。在一些人看来,“科学的大厦已经建成”,人类对自然界的认识已经到了顶点,经典物理学已经发展到“终极理论”,科学似乎已完成了历史使命。
  可是,就在两三年以后,即在19世纪的最后几年里,一些轰动世界的革命性发现无情地冲击了物理学界的保守观点。活生生的客观事实使一些科学的“顶峰论”者目瞪口呆。这些事实也使一些原来已经认为熟悉了这个物质世界的人们,立即又感到并不完全熟悉了,对某些领域又感到陌生了;对于从前蛮有信心地描绘的那个“简单”、“纯朴”、“有秩序”的世界,立刻又产生了怀疑。
(2)伦琴抓住了绿光
      当时轰动世界的事件,首先是X光的发现和放射性元素的发现。

  1895年11月8日傍晚,德国物理学家伦琴(1845~1923)正在沃兹堡大学的一个实验室,做一项关于阴极射线的实验。(阴极射线实验是在抽空的电子管中,由阴极发出的电子在电场加速下所形成的电子流。确认电子的存在,是两年以后的事情,下面将会专门叙述。

  伦琴用黑纸将阴极射线管完全掩遮好,使之与外界相隔绝,然后把窗帘放下,打开高压电源,以便检查有没有光线从管中漏出。突然,他发现有一道绿光从附近的一个板凳射出,掠过他的眼前。他把高压电源关掉,光线也随着消失。奇怪!板凳怎么会发射出光来呢?“留心意外的事情”是科学研究工作者的座右铭。伦琴马上点了灯,照了照板凳,发现那里摆着的原来是自己做其他试验时用的一块硬纸板,硬纸板上涂了一层荧光材料(氰亚铂酸钡的晶体)。

  伦琴感到十分惊讶。从阴极射线管中散出的阴极射线有效射程仅有一英寸(1英寸=2.54厘米),显然是不会跑出这么远的。那么是什么使荧光材料闪出光亮的呢?伦琴很快意识到有某种崭新的未知光线发生了。这种未知光线从阴极射线管发出,穿过了黑纸包层,射到了硬纸板上,激发了涂料的晶体发出荧光。

  对大自然最细致的超出常轨的举动,要加以注意,对那些意外事件进行研究,这是科研工作能取得成果的秘诀之一。在这里,最需要的是始终不懈的敏感性。因为“机遇只垂青那些懂得怎样追求它的人”。伦琴为此惊喜万分,再次打开开关,随手拿一本书挡在阴极射线管与硬纸板之间,发现硬纸板依然有光。

  伦琴激动得难以控制自己,一连几天几夜关在实验室里继续实验。他先后在阴极射线管与硬纸板之间放了木头、乌木、硬橡胶、氟石以及许多种金属,结果发现这种未知的光线仍然能够照直穿透这些物体。只有铝和铂挡住了这种光线。

  伦琴的妻子对于伦琴总是迟迟不回家很生气。于是伦琴把她带到实验室里,把用一张黑纸包好的照相底片放在她的手掌下,然后用阴极射线管一照,拍下了历史上最著名的一张照片。冲洗出来的底片清楚地呈现出伦琴夫人的手骨结构,手上那枚金戒指的轮廓也清晰地印在上面。

  伦琴当时无法说明这种未知的射线,就用代数上常用来求未知数的“X”来表示,把它定名为X射线。实际上后来才知道,X射线是由阴极射线打在阳极靶上而获得的。伦琴经过了一连七个星期废寝忘食的紧张工作,终于在12月28日完成了举世轰动的科学报告。不久,世界上各大报纸都报道了这一重要新闻。这时,有一些物理学家们才开始懊悔自己没有追究实验室内照相底片“走光”的问题。也有的物理学家责备自己把照相底片感光,错误地归于阴极射线的作用结果。还有一位物理学家声称,他发现X光是在伦琴之前,只是由于不愿中断正常的研究工作,而未发表。的确,这个发现完全有条件在20年前的任何实验室完成。可是,如果伦琴对这一“科学的闪光”漫不经心,轻意放过这一重要线索,或是不深入思索,轻率地把它归于任何一种别的原因,那么X光还是发现不了。
(3)原子世界的一道曙光
伦琴的这个发现并不是偶然的。因为早在1878年8月英国物理学家克鲁克斯的工作就曾轰动一时。那时克鲁克斯就根据自己的研究在英国皇家学会作了讲演,他说:“这些真空管中出现的物理现象揭示出物理学的一个新世界”。但他不正确地把阴极射线归于物质的第四态了,他认为阴极射线是“超气态”。德国的勒纳受克鲁克斯的影响,进行了研究,并于1893年公布了关于阴极射线的研究报告。

  伦琴在他们研究的基础上,进而通过试验发现,这种X射线不是像阴极射线那样随磁场偏转,它似乎发生在真空管中阴极射线照射的地方。因为他发现,当阴极射线随着磁铁偏转时,X射线的发源点也跟着移动。例如让阴极射线照射铂,产生的X射线远远比在铝、玻璃和其他物质中产生的X射线强。此外,尽管伦琴利用了区分普通光的棱镜,并没有观察到X光的折射,利用透镜也没有观察到反射的聚焦。显然,X光与普通光是不同的。

  1901年,当瑞典科学院颁发第一次诺贝尔奖金时,物理学奖的选择对象自然在伦琴身上。伦琴成名以后,反对用自己的姓氏来命名X射线。同时他还谢绝了巴伐利亚王子所授予的他的贵族爵位,并因此受到贵族的冷遇。他把他获得的全部诺贝尔奖金都捐献给了自己的工作单位沃兹堡大学物理实验室作为研究费用。他说:“我认为发明和发现都应属于整个人类”。伦琴的无私精神受到了世界各国人民的高度赞扬。

  X射线在后来一直到今天,得到了广泛的应用,工业上用于金属探伤,医院里用它来透视人体的心肺、脏腑和骨胳,已经成了重要的医疗设备。

  对于X射线的研究,不久又促成了天然放射性的发现。因此,可以说X射线是原子世界透出的一道曙光,为人们深入观察原子及其运动带来了光明。
(4)贝克勒尔的偶然
在一个物理学家的家庭里,爸爸是研究荧光的。有一种钟表上使用的物质,白天在阳光照射后,到了黑夜里会发出微弱的光亮,在物理学上,这种经过太阳的紫外线照射以后发出的可见辐射,称为荧光。

  1896年,儿子亨利·贝克勒耳从爸爸那里选了一种荧光物质铀盐,学名叫硫酸钾铀,想研究一下一年前伦琴发现的X射线到底与荧光有没有关系。

  贝克勒耳想,要弄清这个问题,方法并不难。只要把荧光物质放在一块用黑纸包起来的照相底片上面,让它们受太阳光的照射,就能作出判断。由于太阳光是不能穿透黑纸的,因此太阳光本身是不会使黑纸里面的照相底片感光的。如果在由于太阳光的激发而产生的荧光中含有X射线,X射线就会穿透黑纸而使照相底片感光。

  于是,贝克勒耳进行了这个实验,结果照相底片真的感光了。因此,他满以为在荧光中含有X射线。他又让这种现象中的“X射线”穿过铝箔和铜箔,这样,似乎就更加证明了X射线的存在。因为当时除了X射线之外,人们还不知道有别的射线能穿过这些东西。

  可是,有次一连几天是阴沉沉的天气,太阳始终不肯露头,这就使贝克勒耳无法再做实验。他只好把那块已经准备好的硫酸钾铀和用黑纸包裹着的照相底片一同放进暗橱,无意中还将一把钥匙搁在了上面。几天之后,当他取出一张照相底片,企图检查底片是否漏光。冲洗的结果,却意外地发现,底片强烈地感光了,在底片上出现了硫酸钾铀很黑的痕迹,还留有钥匙的影子。可这次照相底片并没有离开过暗橱,没有外来光线;硫酸钾铀未曾受光线照射,也谈不上荧光,更谈不到含有什么X射线了。

  那么,是什么东西使照相底片感光的呢?照相底片是同硫酸钾铀放在一起的,只能推测这一定是硫酸钾铀本身的性质造成的。硫酸钾铀是一种每个分子都含有一个铀原子的化合物。
5楼2007-03-02 12:01:04
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见