24小时热门版块排行榜    

查看: 191  |  回复: 0
当前主题已经存档。

sinapdb

荣誉版主 (职业作家)


[资源] Learning with Kernels: Support Vector Machines

Learning with Kernels: Support Vector Machines

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning) by Bernhard Schlkopf, Alexander J. Smola
Publisher: The MIT Press; 1st edition (December 15, 2001) | ISBN-10: 0262194759 | PDF | 36,2 Mb | 644 pages

In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs— -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

[ Last edited by fenghbu on 2007-3-29 at 16:04 ]
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 sinapdb 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见