| 查看: 201 | 回复: 2 | ||
[求助]
帮忙查个ei检索号
|
|
Stability and bifurcation analysis of a discrete Gompertz model with time delay лл. |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
Materials Today Chemistry审稿周期
已经有5人回复
溴的反应液脱色
已经有7人回复
国自然申请面上模板最新2026版出了吗?
已经有11人回复
推荐一本书
已经有12人回复
基金申报
已经有4人回复
计算机、0854电子信息(085401-058412)调剂
已经有4人回复
纳米粒子粒径的测量
已经有7人回复
常年博士招收(双一流,工科)
已经有4人回复
参与限项
已经有5人回复
有没有人能给点建议
已经有5人回复
inhaul
新虫 (正式写手)
- SEPI: 1
- 应助: 38 (小学生)
- 贵宾: 0.001
- 金币: 6972.5
- 散金: 900
- 红花: 5
- 帖子: 796
- 在线: 584.6小时
- 虫号: 1011659
- 注册: 2010-05-05
【答案】应助回帖
mathfrog(金币+1): 2011-10-16 21:15:55
|
Accession number: 20113514290945 Title: Stability and bifurcation analysis of a discrete Gompertz model with time delay Authors: Li, Yingguo1 Author affiliation: 1 School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, China Corresponding author: Li, Y. (yguoli@fjnu.edu.cn) Source title: Proceedings of World Academy of Science, Engineering and Technology Abbreviated source title: Proc. World Acad. Sci. Eng. Technol. Volume: 80 Issue date: August 2011 Publication year: 2011 Pages: 1441-1444 Language: English ISSN: 2010376X E-ISSN: 20103778 Document type: Journal article (JA) Publisher: WASET - World Academy of Science, Engineering and Technology, Adem Yavuz Cd 6/A7, Bayrampasa, Istanbul, 34045, Turkey Abstract: In this paper, we consider a discrete Gompertz model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark- Sacker bifurcations occur when the delay passes a sequence of critical values. The direction and stability of the Neimark-Sacker are determined by using normal forms and centre manifold theory. Finally, some numerical simulations are given to verify the theoretical analysis. Number of references: 14 Main heading: Bifurcation (mathematics) Controlled terms: Stability - Time delay Uncontrolled terms: Bifurcation parameter - Characteristic equation - Critical value - Gompertz model - Gompertz system - Manifold theory - Neimark-Sacker bifurcation - Normal form - Stability and bifurcation analysis Classification code: 961 Systems Science - 951 Materials Science - 931 Classical Physics; Quantum Theory; Relativity - 921 Mathematics - 801 Chemistry - 731 Automatic Control Principles and Applications - 713 Electronic Circuits Database: Compendex |
2楼2011-10-16 20:58:41
3楼2011-10-16 21:14:26












回复此楼
mathfrog