| 查看: 1058 | 回复: 11 | |||
[交流]
研究者发现可以延缓成体干细胞衰老的机制
|
|||
|
Scientists Turn Back the Clock On Adult Stem Cells Aging http://www.sciencedaily.com/releases/2011/09/110920163215.htm ScienceDaily (Sep. 20, 2011) — Researchers have shown they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate. The findings could lead to medical treatments that may repair a host of ailments that occur because of tissue damage as people age. A research group led by the Buck Institute for Research on Aging and the Georgia Institute of Technology conducted the study in cell culture, which appears in the September 1, 2011 edition of the journal Cell Cycle. The regenerative power of tissues and organs declines as we age. The modern day stem cell hypothesis of aging suggests that living organisms are as old as are its tissue specific or adult stem cells. Therefore, an understanding of the molecules and processes that enable human adult stem cells to initiate self-renewal and to divide, proliferate and then differentiate in order to rejuvenate damaged tissue might be the key to regenerative medicine and an eventual cure for many age-related diseases. A research group led by the Buck Institute for Research on Aging in collaboration with the Georgia Institute of Technology, conducted the study that pinpoints what is going wrong with the biological clock underlying the limited division of human adult stem cells as they age. "We demonstrated that we were able to reverse the process of aging for human adult stem cells by intervening with the activity of non-protein coding RNAs originated from genomic regions once dismissed as non-functional 'genomic junk'," said Victoria Lunyak, associate professor at the Buck Institute for Research on Aging. Adult stem cells are important because they help keep human tissues healthy by replacing cells that have gotten old or damaged. They're also multipotent, which means that an adult stem cell can grow and replace any number of body cells in the tissue or organ they belong to. However, just as the cells in the liver, or any other organ, can get damaged over time, adult stem cells undergo age-related damage. And when this happens, the body can't replace damaged tissue as well as it once could, leading to a host of diseases and conditions. But if scientists can find a way to keep these adult stem cells young, they could possibly use these cells to repair damaged heart tissue after a heart attack; heal wounds; correct metabolic syndromes; produce insulin for patients with type 1 diabetes; cure arthritis and osteoporosis and regenerate bone. The team began by hypothesizing that DNA damage in the genome of adult stem cells would look very different from age-related damage occurring in regular body cells. They thought so because body cells are known to experience a shortening of the caps found at the ends of chromosomes, known as telomeres. But adult stem cells are known to maintain their telomeres. Much of the damage in aging is widely thought to be a result of losing telomeres. So there must be different mechanisms at play that are key to explaining how aging occurs in these adult stem cells, they thought. Researchers used adult stem cells from humans and combined experimental techniques with computational approaches to study the changes in the genome associated with aging. They compared freshly isolated human adult stem cells from young individuals, which can self-renew, to cells from the same individuals that were subjected to prolonged passaging in culture. This accelerated model of adult stem cell aging exhausts the regenerative capacity of the adult stem cells. Researchers looked at the changes in genomic sites that accumulate DNA damage in both groups. "We found the majority of DNA damage and associated chromatin changes that occurred with adult stem cell aging were due to parts of the genome known as retrotransposons," said King Jordan, associate professor in the School of Biology at Georgia Tech. "Retroransposons were previously thought to be non-functional and were even labeled as 'junk DNA', but accumulating evidence indicates these elements play an important role in genome regulation," he added. While the young adult stem cells were able to suppress transcriptional activity of these genomic elements and deal with the damage to the DNA, older adult stem cells were not able to scavenge this transcription. New discovery suggests that this event is deleterious for the regenerative ability of stem cells and triggers a process known as cellular senescence. "By suppressing the accumulation of toxic transcripts from retrotransposons, we were able to reverse the process of human adult stem cell aging in culture," said Lunyak. "Furthermore, by rewinding the cellular clock in this way, we were not only able to rejuvenate 'aged' human stem cells, but to our surprise we were able to reset them to an earlier developmental stage, by up-regulating the "pluripotency factors" -- the proteins that are critically involved in the self-renewal of undifferentiated embryonic stem cells." she said. Next the team plans to use further analysis to validate the extent to which the rejuvenated stem cells may be suitable for clinical tissue regenerative applications. The study was conducted by a team with members from the Buck Institute for Research on Aging, the Georgia Institute of Technology, the University of California, San Diego, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, International Computer Science Institute, Applied Biosystems and Tel-Aviv University. [ 来自科研家族 生物材料 ] |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
准备投稿Phytomedicine,急需相关文章格式和附件格式的template以供参考?
已经有7人回复
遥感测压
已经有0人回复
内分泌系统/代谢和营养支持论文润色/翻译怎么收费?
已经有127人回复
ALC0315接3-巯基丙酸怎么接不上呢,愁
已经有0人回复
学术求助
已经有0人回复
美国犹他大学分子影像和生物材料方向招收全额奖学金博士后以及博士研究生
已经有2人回复
381一志愿中肿求调剂!!
已经有0人回复
临床医学313分 一作一区sci 求医学院专硕调剂收留
已经有3人回复
卵巢激素撤退法
已经有0人回复
» 本主题相关商家推荐: (我也要在这里推广)
» 本主题相关价值贴推荐,对您同样有帮助:
高聚物聚合单体怎样分析呢?
已经有11人回复
《biomaterials》上最新一篇关于成体干细胞组织工程血管的综述
已经有49人回复
北科大毛卫民老师的著作合集
已经有202人回复
【求助】A-Fe晶体中加H无法弛豫
已经有4人回复
【求助】关于自微乳的体外溶出度测定
已经有5人回复
» 抢金币啦!回帖就可以得到:
山东征女友,坐标济南
+1/169
ChineseResearchLaTeX: 开源、免费的vibe coding辅助国自然写作
+1/80
贺电中定位于“积极作用”,是不是对基金委工作不够满意?
+1/73
海法大学线上开放日
+1/33
国家级青年人才课题组招收2026级硕士研究生
+1/30
海南大学海洋技术与装备学院-科研助理招聘(可读博)--膜分离水处理方向
+1/29
海南大学海洋技术与装备学院-科研助理招聘(可读博)膜分离水处理方向
+1/27
代朋友发 88公务员诚征男友
+1/20
2026年天津科技大学“新能源催化与膜材料团队”研究生招生
+1/17
英国布里斯托大学诚招博士生,博士后和联合培养生
+1/17
上海交通大学-宁波东方理工大学联合培养博士生 – 力学
+1/9
上海交通大学-宁波东方理工大学联合培养博士生
+1/8
英国南安普顿大学禅铎课题组诚招气候动力方向博士后
+1/7
湖南大学-分析检测技术和生物柔性传感器-招收1名博士研究生 (2026年,第二批)
+1/6
中国科学技术大学 工程科学学院 国家级人才团队 诚聘博士后
+1/4
中北大学冯瑞教授*开山大弟子*招募
+1/4
怎么发布了求助贴了, 一发就转到删除栏了
+1/3
墨尔本大学(QS13)急招CSC博士(补齐全奖)/访问学者/博士后 (材料/生物医学/器官芯片等)
+1/3
26申博自荐求博导-生物传感分析方向
+1/3
南京大学能源与资源学院徐加陵课题组招聘:科研助理、硕士生、博士生
+1/1
leimiao_hit
木虫之王 (文学泰斗)
- MedEPI: 5
- 应助: 1336 (讲师)
- 贵宾: 0.707
- 金币: 113735
- 帖子: 85000
- 在线: 6307.5小时
- 虫号: 1264338
2楼2011-09-21 14:38:11
4楼2011-09-21 14:40:51
7楼2011-09-23 16:42:02
10楼2012-03-18 16:30:16
★
aegeansyang(金币+1): 谢谢参与
aegeansyang(金币+1): 谢谢参与
|
本帖内容被屏蔽 |
11楼2012-03-18 17:41:19
12楼2012-05-22 14:25:21
简单回复
pepperp3楼
2011-09-21 14:38
回复
aegeansyang(金币+1):谢谢参与
电子云5楼
2011-09-21 15:19
回复
aegeansyang(金币+1):谢谢参与
2011-09-21 16:55
回复
aegeansyang(金币+1):谢谢参与
祝福!!
纵览8楼
2011-09-23 17:08
回复
aegeansyang(金币+1):谢谢参与
ycl869楼
2011-09-23 17:34
回复
aegeansyang(金币+1):谢谢参与













回复此楼
pwp823