| 查看: 168 | 回复: 2 | |||
| 当前主题已经存档。 | |||
[交流]
A Book: Random walks and electric networks
|
|||
|
Random walks and electric networks by Peter G. Doyle, J. Laurie Snell Hardcover: 159 pages Publisher: Mathematical Assn of America (December 1984) Language: English ISBN: 0883850249 Product Dimensions: 0.8 x 5.2 x 7.5 inches The book brings together two of my passions : random walks and electric networks. It turns out that there are interesting relationships between these two areas, so insights in one provide can be used to prove things in the other. There is this beautiful theorem by Polya which states that a random walker on an infinite street network in d-dimensional space is bound to return to the starting point when d = 2, but has a positive probability of escaping to infinity without returning to the starting point when d >= 3. The book reinterprets this theorem as a statement about electric networks, and then proves the theorem using techniques from classical network theory. The proof relies on showing that the resistance of the corresponding electric network in 1 and 2 dimensions is infinite, whereas it is finite in the 3 dimensional case. Thus some current [like our random walker] can flow to infinity http://www.ee.technion.ac.il/~adam/FUN/RWEN.pdf |
» 猜你喜欢
青椒八年已不青,大家都被折磨成啥样了?
已经有7人回复
为什么nbs上溴 没有产物点出现呢
已经有10人回复
救命帖
已经有11人回复
招博士
已经有5人回复
青年基金C终止
已经有3人回复
26申博求博导推荐-遥感图像处理方向
已经有4人回复
限项规定
已经有7人回复
西南交通大学国家级人才团队2026年博士研究生招生(考核制)—机械、材料、力学方向
已经有3人回复
英文综述是否需要润色及查重
已经有5人回复
1
|
2楼2006-11-21 00:59:36
![]() ![]() ![]() |
3楼2006-11-23 12:54:05













回复此楼

