24小时热门版块排行榜    

查看: 4485  |  回复: 19
【奖励】 本帖被评价1次,作者chrinide增加金币 0.6

chrinide

木虫 (正式写手)


[资源] 通向凝聚态物理和量子化学的终极之路--密度矩阵重整化群,从矩阵乘积态到张量网态

The key goal of quantum chemistry is the accurate calculation of geometrical and electronical ground state properties of molecules as well of their excited states. To this purpose, density functional theory is by far the most successful and flexible method. However, density functional theory can only be carried out by the use of an exchange-correlation functional which takes into account electronic correlation effects in the molecules. Unfortunately, this functional is only known approximately, and an important topic in quantum chemistry is the calculation of correlation effects in molecules („post-Hartree-Fock“ calculations). A (so-called) full configuration interaction (CI) calculation is limited to molecules with an extremely small number of orbitals due to the exponential explosion of quantum basis states; hence various approximate schemes to take into account subsets of quantum basis states have been proposed.

A similar situation is encountered in the study of strongly correlated quantum systems in condensed matter physics: in the study of lattice models such as the Hubbard or Heisenberg models, which are considered to capture the essentials of low-dimensional quantum magnetism, high-temperature superconductivity and other novel quantum states, the question of identifying relevant subsets of quantum basis states has been at the forefront of research for quite some time.
In the case of one-dimensional systems, the so-called density-matrix renormalization group method (DMRG) has emerged as the most powerful method to study correlation effects, both statically and dynamically. From an application point of view, it can be seen as an extension of exact diagonalization methods which are the counterpart of CI in physics. DMRG can therefore be used to extend the reach of CI in quantum chemistry, which has been successfully done by several groups worldwide. However, this is a complicated endeavour: whereas in physics the external one-dimensional lattice provides a natural ordering of sites (or orbitals), this is not the case in quantum chemistry, where the method must be optimized by a clever choice of orbital sets and ordering of orbitals on a pseudo-one-dimensional axis with long-ranged interactions. Nevertheless, impressive accuracies on the level of CI have been achieved.

Recently, a thorough reformulation of DMRG in terms of so-called matrix product states (MPS) has shown a profound connection of this method to quantum information theory and revealed that it is only one special method in a much more general set of methods that can give variationally optimal results for much more complicated „lattice“ arrangements: in physics, these would be quantum states on two- or even three-dimensional lattices (so-called tensor network states), The basic idea of tensor network states is to approximate ground-state wave functions of strongly correlated systems by breaking down the complexity of the high dimensional coefficient tensor of a full configuration-interaction (FCI) wave function and the current hope is that these methods will shed light on some of the big outstanding questions in condensed matter physics.

But again, there is a connection to quantum chemistry: these general networks of sites (or orbitals) are not restricted to regular lattices, but can be adapted to the complex arrangements and interactions between quantum chemistry orbitals. In the most naive approach, these arrangements would follow the expected geometrical structure of the molecule under study. However, this can be done more systematically by studying entanglement properties of quantum chemical states, as entanglement turns out to determine the efficiency and accuracy of these methods. Very little is known so far, but it is clear that the current restrictions of DMRG in quantum chemistry would be largely lifted due to the much more flexible setups allowed by tensor network states.

[ Last edited by chrinide on 2011-5-7 at 09:26 ]
回复此楼

» 收录本帖的淘帖专辑推荐

uicorn3

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-06 22:13:45:
The key goal of quantum chemistry is the accurate calculation of geometrical and electronical ground state properties of molecules as well of their excited states. To this purpose, density function ...

如Garnet Chans所说,http://arxiv.org/abs/0711.1398
单组态为主的体系DMRG影响有限
'Conversely, the ansatz is inefficient for describing dynamic correlation, since this benefits from knowledge of the occupied and virtual spaces'

[ Last edited by fichte on 2011-5-20 at 18:38 ]
2楼2011-05-06 23:22:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

★★★ 三星级,支持鼓励

引用回帖:
Originally posted by fichte at 2011-05-06 23:22:19:
如Garnet Chan自己承认的,http://arxiv.org/abs/0711.1398
单组态体系DMRG影响有限
'Conversely, the ansatz is inefficient for describing dynamic correlation, since this benefits from ...

如果必须用大活性空间,或者属于强关联体系,DMRG很爽。

Garnet Chan是韩裔么?
3楼2011-05-07 00:24:56
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by beefly at 2011-05-07 00:24:56:
如果必须用大活性空间,或者属于强关联体系,DMRG很爽。

Garnet Chan是韩裔么?

不知道
4楼2011-05-07 00:28:41
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-06 23:22:19:
如Garnet Chan自己承认的,http://arxiv.org/abs/0711.1398
单组态体系DMRG影响有限
'Conversely, the ansatz is inefficient for describing dynamic correlation, since this benefits from ...

几乎所有的多电子体系都是需要多组态多参考来精确的描述,单组态近似在某些时候的确很有效,这取决于我们需要得到体系多么精确的物理化学性质。

从量子场论(QFT)或者量子统计力学(QSM)的角度出发,多电子体系的关联能起源于电荷涨落和磁涨落(包括自旋涨落【SFT】和轨道涨落【OFT】)。例如,最近的研究直接表明高温超导体的内在机理和体系的强的自旋涨落密切相关,即便是精确的动力学平均场(DMFT)也不能很好(确切地说几乎不成功)的描述,DMFT包含了时间尺度的非局域量子涨落,但冻结了空间尺度的非局域量子涨落-长程库仑相互作用-电磁涨落。

因此,高温超导的理论研究方向之一就是 DMFT+SFT

经典的DMRG理论是一个基态理论,新的进展包括 TD-DMRG,动力学DMRG......

其实即便只是考虑基态,0温,我们离终极之路也非常非常之遥远。

考虑有限温度-热涨落-体系的激发态-单电子高激发态-FCI failed-MQDT(多通道量子亏损理论)-双电子及多电子激发态-电离态-等离子体......这些基本上属于无人敢碰的看似简单的实则具有极其深刻的物理意义的艰难课题,数十年基本没有多大进展。

引用一个古老的炼金术士格言:

未知必须借由更深的未知来获悉,隐晦必须借由更深的隐晦来明了

[ Last edited by chrinide on 2011-5-13 at 08:19 ]
5楼2011-05-12 23:05:21
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-12 23:05:21:
几乎所有的多电子体系都是需要多组态多参考来精确的描述,单组态近似在某些时候的确很有效,这取决于我们需要得到体系多么精确的物理化学性质。

从量子场论(QFT)或者量子统计力学(QSM) ...

求FCI失败的例子
6楼2011-05-12 23:08:36
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-12 23:08:36:
求FCI失败的例子

He原子的双电子激发态,这是最简单最直接的例子。

其它就太多了了,你可以参考一下MCQD(多通道量子亏损理论)引入和建立的背景和过程。

简单的说:双电子激发时,近独立电子模型中的单电子轨道角动量已不是好的量子数,组态之间的干涉将愈发明显,真正的原子态已不能由原来的单电子组态来描述,此时就需要引入超球坐标来描述了。

[ Last edited by chrinide on 2011-5-13 at 08:20 ]
7楼2011-05-13 08:15:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-13 08:15:48:
He原子的双电子激发态,这是最简单最直接的例子。

其它就太多了了,你可以参考一下MCQD(多通道量子亏损理论)引入和建立的背景和过程。

简单的说:双电子激发时,近独立电子模型中的单电子轨道角动量已 ...

文献出处?
8楼2011-05-13 08:19:41
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-13 08:19:41:
文献出处?

Multichannel Quantum Defect Theory

Google 之 或 百度 之

老了,很多东西记不住了

[ Last edited by chrinide on 2011-5-13 at 08:29 ]
9楼2011-05-13 08:27:03
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-13 08:27:03:
Multichannel Quantum Defect Theory

Google 之 或 百度 之

老了,很多东西记不住了

[ Last edited by chrinide on 2011-5-13 at 08:29 ]

没从Multichannel Quantum Defect Theory找到FCI失败的例子。谁提出,谁举证,我没必要主动提供文献出处吧
10楼2011-05-13 08:44:28
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-13 08:44:28:
没从Multichannel Quantum Defect Theory找到FCI失败的例子。谁提出,谁举证,我没必要主动提供文献出处吧

我倒

你要是真有兴趣研究的话,建议你看看高等原子分子物理方面的书籍以及最新的研究进展。

确切的说,不能说FCI失败,应该说基于单电子近似和BO近似的FCI已不足以描述。

如果考虑QED的辐射校正和NPC效应以及有限光速校正(相对论校正),这个就更复杂了...
11楼2011-05-13 09:03:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-13 09:03:40:
我倒

你要是真有兴趣研究的话,建议你看看高等原子分子物理方面的书籍以及最新的研究进展。

确切的说,不能说FCI失败,应该说基于单电子近似和BO近似的FCI已不足以描述。

如果考虑QED的辐射 ...

再重复一遍,谁提出谁举证。写论文的时候是作者提供文献依据来支持自己的观点,而不是要求读者自己找材料。

FCI failed是你的原话。而且FCI并不一定要架构在BO近似的基础上,比如nuclear orbital Full CI
JCP 123, 014303
JCP 125, 221101

[ Last edited by fichte on 2011-5-13 at 22:41 ]
12楼2011-05-13 09:41:22
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
发现最新版本的ACES II 2.8已经加上了DMRG,不过既没有使用说明,也没有算例,只有一堆代码

http://www.qtp.ufl.edu/ACES/

程序的参考文献:JCP 128, 144116, 2008
13楼2011-05-13 11:17:32
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


另外一个问题,既然是"终极之路",如何证明DMRG是不可能被超越的?

[ Last edited by fichte on 2011-5-13 at 17:10 ]
14楼2011-05-13 16:15:34
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-13 09:41:22:
再重复一遍,谁提出谁举证。写论文的时候是作者提供文献依据来支持自己的观点,而不是要求读者自己找材料。

FCI failed是你的原话。而且BO近似和FCI并不冲突,比如nuclear orbital Full CI
JCP 123, 01 ...

首先,我是在分享我个人对物理的一点点不成熟见解。如果你有什么不同的或者说更好的想法,请你也分享一下...

再者,如果你(GG? or MM?)继续纠结于 Full CI Failed,那么我收回它。

其三,DMRG只是提供了一种可能的很有希望的途径,也许新的数学方法会出现。

最后,很高兴能在小木虫上和你讨论...
15楼2011-05-13 22:04:36
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-13 22:04:36:
首先,我是在分享我个人对物理的一点点不成熟见解。如果你有什么不同的或者说更好的想法,请你也分享一下...

再者,如果你(GG? or MM?)继续纠结于 Full CI Failed,那么我收回它。

其三,DMRG只 ...

谢谢你的好意,言语不妥之处尽请谅解 ...
16楼2011-05-13 22:37:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-13 22:37:15:
谢谢你的好意,言语不妥之处尽请谅解 ...

(☆_☆)探求真理-(我的境界就只有胡思乱想了),有时候争论很有必要--所谓 真理越辩越明 应该是个这个道理吧,哈哈

希望你今后 不吝赐教...
17楼2011-05-13 22:47:43
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fichte

铜虫 (小有名气)


引用回帖:
Originally posted by chrinide at 2011-05-13 22:47:43:
(☆_☆)探求真理-(我的境界就只有胡思乱想了),有时候争论很有必要--所谓 真理越辩越明 应该是个这个道理吧,哈哈

希望你今后 不吝赐教...

〇rz 不敢当
18楼2011-05-13 22:49:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chrinide

木虫 (正式写手)


引用回帖:
Originally posted by fichte at 2011-05-13 22:49:07:
〇rz 不敢当

哈哈 谦虚了哦
19楼2011-05-13 22:52:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mljphy

铁虫 (正式写手)


谁能介绍一下矩阵乘积态(Matrix product states ,MPS),张量网络态(Tensor Networks state,TNS),投影纠缠对态(Projected Entangment Pair State,PEPS),多尺度纠缠重整化拟设(Multi-scale Entangement Renomalization Ansats,MERA),树张量态(TTS,Tree Tensors State),这些概念?多谢了。
20楼2012-10-31 22:03:38
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 chrinide 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见