| 查看: 554 | 回复: 1 | |||
[交流]
【讨论】Nanodiamonds Fight Cancer 已有1人参与
|
|
http://pubs.acs.org/cen/news/89/i11/8911notw3.html Faceted nanoparticles shaped somewhat like cut diamonds not only can deliver drugs to tumor cells but also can ensure that the small molecules stick around long enough to do some good, a research team has found (Sci. Trans. Med., DOI: 10.1126/scitranslmed.3001713). Chemotherapy often fails because cells protect themselves by pumping out foreign substances via transmembrane transporter proteins. As a result, physicians have to administer cancer therapeutics at high, and sometimes harmful, concentrations for them to be efficacious. Nanoparticles—materials that can’t as easily be kicked out of cells and can hold high concentrations of bound molecules—show promise as drug delivery vehicles. The 2- to 8-nm-diameter carbon-based nanodiamonds, in particular, “have unique electrostatic properties that promote potent binding of drugs” and are ideal for chemotherapy, says Dean Ho, the research team’s leader and a biomedical engineering professor at Northwestern University. By binding the cancer agent doxorubicin to nanodiamonds, Ho and his team demonstrated particle-mediated delivery of the drug to both liver and mammary gland tumor cells in mice. In both cases, seven days after injection, the drug-loaded nanodiamonds killed about three times as many tumor cells as doxorubicin alone. They also circulated in the blood of the mice 10 times as long as the unbound cancer agent. When treated with a high dose (200 µg) of doxorubicin, mice riddled with mammary gland tumors died after 15 days. But those treated with an equivalent dose of a nanodiamond-doxorubicin complex , which is thought to release the drug slowly over time, had a nearly 100% survival rate over the course of the eight-week study, and their tumors decreased in size by about 50%. “What is new and striking” about this work, says Fuyu Tamanoi, a biochemist at the University of California, Los Angeles, is that the nanodiamond-doxorubicin formulation blocks tumor growth in the mice with drug-resistant mammary gland tumors cells. “This suggests that nanodiamonds can overcome drug resistance,” he says. 我给作者 发了邮件,表示我的看法 I have some questions: 1 Nanodiamonds (carbon) is inert and hardly degradable in body. Would it cause some damage to patient ? 2 Will you consider apply some biodegradable material to combine with drug,such as PLA, PGA ? 没有得到教授回复,也许我的问题不值一提。 各位有空的话,可以发表点看法,十分感谢。 |
» 猜你喜欢
蛋白稳定性实验与功能实验不一致
已经有11人回复
第4年了,马上40了,可能我与国基确实无缘吧。。。
已经有12人回复
药理学论文润色/翻译怎么收费?
已经有187人回复
2026申博推荐
已经有1人回复
一篇扩散模型的Nature Machine Intelligence论文和Elsevier上的深度学习药物书籍
已经有1人回复
2026年申博药学专业
已经有1人回复
中国药科大学2026入学博士,药物合成和设计经验,放射化学及放射医学研究
已经有25人回复
使用MolAICal进行多肽虚拟筛选教程-同样适用于蛋白质和核酸的虚拟筛选
已经有1人回复
使用MolAICal计算药物化学过滤器MCFs及MCE-18描述符
已经有0人回复
使用MolAICal发现蛋白受体潜在的活性口袋及位点
已经有0人回复

2楼2011-03-21 23:29:54













回复此楼