| 查看: 517 | 回复: 1 | |||
[交流]
【讨论】Nanodiamonds Fight Cancer已有1人参与
|
|
http://pubs.acs.org/cen/news/89/i11/8911notw3.html Faceted nanoparticles shaped somewhat like cut diamonds not only can deliver drugs to tumor cells but also can ensure that the small molecules stick around long enough to do some good, a research team has found (Sci. Trans. Med., DOI: 10.1126/scitranslmed.3001713). Chemotherapy often fails because cells protect themselves by pumping out foreign substances via transmembrane transporter proteins. As a result, physicians have to administer cancer therapeutics at high, and sometimes harmful, concentrations for them to be efficacious. Nanoparticles—materials that can’t as easily be kicked out of cells and can hold high concentrations of bound molecules—show promise as drug delivery vehicles. The 2- to 8-nm-diameter carbon-based nanodiamonds, in particular, “have unique electrostatic properties that promote potent binding of drugs” and are ideal for chemotherapy, says Dean Ho, the research team’s leader and a biomedical engineering professor at Northwestern University. By binding the cancer agent doxorubicin to nanodiamonds, Ho and his team demonstrated particle-mediated delivery of the drug to both liver and mammary gland tumor cells in mice. In both cases, seven days after injection, the drug-loaded nanodiamonds killed about three times as many tumor cells as doxorubicin alone. They also circulated in the blood of the mice 10 times as long as the unbound cancer agent. When treated with a high dose (200 µg) of doxorubicin, mice riddled with mammary gland tumors died after 15 days. But those treated with an equivalent dose of a nanodiamond-doxorubicin complex , which is thought to release the drug slowly over time, had a nearly 100% survival rate over the course of the eight-week study, and their tumors decreased in size by about 50%. “What is new and striking” about this work, says Fuyu Tamanoi, a biochemist at the University of California, Los Angeles, is that the nanodiamond-doxorubicin formulation blocks tumor growth in the mice with drug-resistant mammary gland tumors cells. “This suggests that nanodiamonds can overcome drug resistance,” he says. 我给作者 发了邮件,表示我的看法 I have some questions: 1 Nanodiamonds (carbon) is inert and hardly degradable in body. Would it cause some damage to patient ? 2 Will you consider apply some biodegradable material to combine with drug,such as PLA, PGA ? 没有得到教授回复,也许我的问题不值一提。 各位有空的话,可以发表点看法,十分感谢。 |
» 猜你喜欢
求助cortellis数据库查询针对靶点GPC3 的药物和在研分子
已经有1人回复
2级醇的长链酯化
已经有0人回复
药物学论文润色/翻译怎么收费?
已经有216人回复
碘代反应
已经有2人回复
求医药版块产品经理人才推荐
已经有1人回复
寻求医药版块技术市场工程师推荐
已经有1人回复
2026CSC博士,有机化学,有机方法学,不对称催化
已经有0人回复
2026博士申请-药物化学方向(小分子化合物合成)
已经有4人回复
大肠杆菌临床分离菌株ETEC菌株求购
已经有2人回复
钯碳氢气还原脱cbz产物伯胺出现甲基化。
已经有1人回复

2楼2011-03-21 23:29:54













回复此楼