| 查看: 574 | 回复: 2 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
求助物理方面英译汉一段
|
|||
|
As mentioned above, besides high conductivity (~106 S), effective TCO thin films should have a very low absorption coefficient in the near UV-VIS-NIR region. The transmission in the near UV is limited by Eg, as photons with energy larger than Eg are absorbed. A second transmission edge exists at the NIR region, mainly due to reflection at the plasma frequency. Ideally, a wide band gap TCO should not absorb photons in the transmission “window” in the UV-VIS-NIR region. However, there are no “ideal” TCOs thin films, and even if such films could be deposited, reflection and interference would also affect the transmission. Hence, 100% transparency over a wide region cannot be obtained. The optical properties of TCOs transmission T, reflection R, and absorption A, are determined by its refraction index n, extinction coefficient k, band gap Eg, and geometry. Geometry includes film thickness, thickness uniformity, and film surface roughness. T, R and, A are intrinsic, depending on the chemical composition and solid structure of the material, whereas the geometry is extrinsic. There is a negative correlation between the carrier density and the position of the IR absorption edge, but positive correlation between the carrier density and the UV absorption edge, as Eg increases at larger carrier density (Moss-Burstein effect). As a result, the TCO transmission boundaries and conductivity are interconnected. The width of the VIS transmission window of a TCO film with thickness deposited on a transparent substrate is affected not only by the optical parameters of the TCO film but also by the optical properties of the substrate. The refractive index nsub of the most common substrates are ~1.45 for fused silica and ~1.6 for various glasses. The extinction coefficient of the substrate (ksub) is generally < 10-7, hence any light absorption would take place in the film, where generally kfilm> ksub. For films thicker than 100 nm, several interference bands could be formed, producing maximal and minimal values of T when either the wavelength or thickness is varied. When kfilm 0, the peak transmission (Tmax) is equal to the transmission of the substrate. Hence, assuming that the sample is in air, Tmax = 90% and 93% for films deposited on glass and fused silica, respectively. The minimum sample transmission (Tmin) in air is expressed by: As most TCO films have values of n in the VIS in the range 1.8 – 2.8, Tmin will be in the range 0.8 – 0.52. Tmin is closely approximated by the relation: Tmin = 0.051n2-0.545n+1.654. As n in the VIS decreases with wavelength, Tmin increases with wavelength, but will not exceed ~0.8. When the film extinction coefficient is not negligible and affects the transmission, Tmax < Tsub, and Tmin also decreases. By decreasing the TCO film thickness, T is increased but the sheet resistance decreases. Combining together the optical and electrical properties of the film, the fraction of the flux absorbed in a film (A) is given by the expression: Fig. 1 presents plots of the fraction of the absorbed power at wavelength of 400 nm and k ~0.02 as a function of the conductivity for three representative values of RS. For a given low values of RS necessitate using thick films, and lower conductivity requires the use of even thicker films, resulting in an increase in the loss of radiative power. The dependence of film thickness on the conductivity for three values of Rs is presented in Fig. 2. Using the same film conductivity, applications requiring the lowest RS will be thicker and, and the absorbed fraction will be higher. At present, only high quality ITO is compatible at present with the condition that the absorbed power fraction be lower than 10% and RS = 10 At lower extinction coefficient (k) films with lower conductivities can be used, e.g., when k = 0.002 instead of 0.02, the absorbed power A is lower by a factor of ~8, and allows the use of thicker films. The combination of film thickness, conductivity, and extinction coefficient determine the absorption of the radiation flux. However, when the total transmission T is considered, reflection and interference must be considered, which depend on the refractive indices of the substrate and the film, and the film thickness. A general formula for T and R was given by Cisneros. |
» 猜你喜欢
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有10人回复
同年申请2项不同项目,第1个项目里不写第2个项目的信息,可以吗
已经有9人回复
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有11人回复
表哥与省会女结婚,父母去帮带孩子被省会女气回家生重病了
已经有7人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有10人回复
天津大学招2026.09的博士生,欢迎大家推荐交流(博导是本人)
已经有9人回复
有院领导为了换新车,用横向课题经费买了俩车
已经有10人回复
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有6人回复
» 抢金币啦!回帖就可以得到:
医学超声影像负责人招聘-中国科学院赣江创新研究院
+1/983
-大龄未婚男找女朋友结婚
+1/241
西南科技大学曹克课题组招收2026级申请考核制有机化学博士研究生
+1/176
供应爱德华RV 3、RV 12,阿特拉斯及莱宝真空品牌油泵及分子泵等真空产品15216851283
+1/83
欢迎报考南京农业大学植物环境适应课题组课题组2026级博士生。
+1/76
香港中文大学医学院 诚聘 研究助理教授 (医工结合/生物信息学方向)
+1/47
感谢小木虫的缘分
+1/41
罗格斯大学纽瓦克校区(Rutgers-Newark) 招收 PHD,计算材料物理方向
+1/38
澳大利亚麦考瑞大学(Macquarie University)国际博士硕士全额奖学金-计算机-26年中开学
+1/38
北京工业大学化生学院青年教师或“青年优秀人才”招聘启事
+1/36
有没有人做过这种结构的顺式体向反式体的转化?
+1/36
同济大学脑机智能团队脑机接口方向招生招聘
+1/32
同济大学脑机智能团队脑机接口方向招生招聘
+1/31
南方科技大学物理系夏秀杨课题组招收博士生/博士后 计算与理论软物质/生物物理方向
+1/30
华南师范大学(211)- 光电科学与工程学院 - 申请审核制(2026年4-5月份面试考核)
+2/24
澳大利亚麦考瑞大学(Macquarie University)国际博士硕士全额奖学金-计算机-26年中开学
+1/18
新加坡 南洋理工大学- 智能光子/ 传感 PHD 全奖一名 2026 - 8 月入学
+1/10
上海工程技术大学张培磊教授团队招收博士生
+1/10
斯德哥尔摩 DigitalFuture 博士后奖学金机会!
+1/6
哈工大 张乃庆课题组招收博士快响计划(名额充足),通过后随时入学
+1/4
zhengbiju1833(金币+1, 翻译EPI+1): 2011-03-22 13:26:59
|
不行,翻了一点儿发现有些专业符号不认识。。。 纠结。。。 As mentioned above, besides high conductivity (~106 S), effective TCO thin films should have a very low absorption coefficient in the near UV-VIS-NIR region. The transmission in the near UV is limited by Eg, as photons with energy larger than Eg are absorbed. 如上所述,除了高电导率(〜106 S)外,有效的TCO薄膜还应该在近紫外-可见-近红外吸收光谱区域有一个非常低的吸收系数。在近紫外区域的发射受到EG的限制,结果导致能量大于EG的光子被吸收。 |
2楼2011-03-16 17:19:32
3楼2011-03-16 17:27:12













回复此楼