| 查看: 537 | 回复: 3 | |||
[交流]
帮忙查询一下我的论文是否被检索 已有3人参与
|
| 论文题目Intrusion detection based on fuzzy association rules |
» 猜你喜欢
最近几年招的学生写论文不引自己组发的文章
已经有6人回复
职称评审没过,求安慰
已经有56人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
» 本主题相关价值贴推荐,对您同样有帮助:
帮忙查询一下ISTP检索论文一篇
已经有1人回复
帮忙查一下论文的ISTP检索号,非常感谢
已经有4人回复
帮忙查一下这篇论文的ISTP检索号
已经有3人回复
请哪位朋友帮忙查一下下面这篇文章是否被Sci检索?谢谢!
已经有3人回复
请高手帮忙查询下论文是否EI检索,检索号多少,谢谢
已经有10人回复
请好心人帮我查一下这篇论文是否被ISTP检索!
已经有3人回复
紧急求助,帮忙查一下论文是否被SCI检索,谢谢!
已经有3人回复
请哪位大侠帮忙查一篇文章是否被ISTP检索
已经有5人回复
急用!!麻烦能查检索的楼主帮忙检索一下我的7篇文章是否被SCI、EI检索,十分感谢!
已经有7人回复
请求查询两篇论文是否被ISSPH检索,请多多帮忙
已经有3人回复
adabb922
木虫 (正式写手)
- 应助: 1 (幼儿园)
- 金币: 3340.3
- 红花: 1
- 帖子: 591
- 在线: 253.5小时
- 虫号: 347594
- 注册: 2007-04-16
- 性别: GG
- 专业: 机械摩擦学与表面技术
★ ★
小木虫(金币+0.5):给个红包,谢谢回帖交流
200510801206(金币+1): 欢迎交流! 2011-03-02 18:26:26
小木虫(金币+0.5):给个红包,谢谢回帖交流
200510801206(金币+1): 欢迎交流! 2011-03-02 18:26:26
|
检索了,检索信息如下 Accession number: 20110213577118 Title: Intrusion detection based on fuzzy association rules Authors: Wu, KaiXing1 ; Hao, Juan1 ; Wang, Chunhua1 Author affiliation: 1 Department of Information and Eletronic Engineering, Handan, Hebei Province, China Corresponding author: Wu, K. (haojuanjsj@163.com) Source title: Proceedings - 2010 International Symposium on Intelligence Information Processing and Trusted Computing, IPTC 2010 Abbreviated source title: Proc. - Int. Symp. Intell. Inf. Process. Trusted Comput., IPTC Monograph title: Proceedings - 2010 International Symposium on Intelligence Information Processing and Trusted Computing, IPTC 2010 Issue date: 2010 Publication year: 2010 Pages: 200-203 Article number: 5663068 Language: English ISBN-13: 9780769541969 Document type: Conference article (CA) Conference name: 2010 International Symposium on Intelligence Information Processing and Trusted Computing, IPTC 2010 Conference date: October 28, 2010 - October 29, 2010 Conference location: Huanggang, China Conference code: 83425 Sponsor: Wuhan University; Huanggang Normal University; IEEE Wuhan Section; IEEE Signal Processing Tainan Chapter Publisher: IEEE Computer Society, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States Abstract: With the rapid development of computer network technology, network not only provides the service for the people, but also has brought many negative effects. Intrusion detection is used to solve this problem. In order to improve the speed and intensity of intrusion detection, data mining technology can be applied to intrusion detection systems. Association rules are a common method in data mining. But, it causes the sharp boundary problem. The concept of fuzzy set is better than partition method because fuzzy sets provide a smooth transition between members and non-members of a set, consequently handle the sharp boundary problem in an appropriate way. In this paper, fuzzy association rules is researched in Intrusion Detection System. And Intrusion Detection framework is designed. It outperforms other methods, especially in terms of false positive rate. © 2010 IEEE. Number of references: 7 |
2楼2011-03-01 21:29:32
3楼2011-03-02 16:25:13

4楼2011-03-02 16:37:56













回复此楼