| 查看: 1223 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
急。求助翻译。质量一般就行,不要机译。谢谢
|
|||
|
The objective of the present study was to employ suitable adsorbent with free flowing characteristicsfor improving the stability and physical properties of solid lipid nanoparticles (SLN) for oral administration. Stearic acid based nanoparticles of carvedilol phosphate were fabricated by solvent emulsification evaporation technique in sodium taurocholate solution prepared in pH 7.2 buffers (I—KH2PO4/NaOH or II—NaH2PO4/Na2HPO4) with 1% polyvinyl alcohol. Nanoparticles were then adsorbed by passing the nanodispersion through a Neusilin US2 (adsorbent) column. Interestingly, scanning electron microscopy revealed round deformed and even collapsed nanoparticles in Buffer-I and discrete spherical to ellipsoidal nanoparticles in Buffer-II which indicates the inability of nanoemulsion to crystallize and form SLN in Buffer-I. The successful formation of SLN in Buffer-II was confirmed by differential scanning calorime try and X-ray diffraction. The retention of SLN from the nanodispersion by adsorption on the adsorbent imparted good flow property and resulted in a marked stability improvement of the formulation in terms of drug retention efficiency and release profile as compared to the simple nanosuspension. In conclusion, the adsorbent technology would be instrumental in imparting additional features to the existing conventional colloidal system for pharmaceutical application which would ease the process of capsule filling at industrial scale, simplify the handling of formulations by patients and can significantly improve the shelf life of the product for a longer period of time as compared to liquid formulations. improve stability. However, the coexistence of high concentration of stabilizing agents (surfactants) along with the lipid nanopartiSolid lipid based colloidal carriers of drugs have attracted considerable attention in the last two decades [1–4]. As they are derived from physiologically compatible lipids, solid lipid nanoparticles (SLN) represent a safe and effective alternative which include additional advantages and are devoid of the potential toxicities of conventional polymeric nanoparticles [5–7]. SLN for oral drug administration have specifically been employed for improving bioavailability by targeting the uptake of the drug by lymphatic system which prevents its hepatic first pass metabolism [8–11]. Despite the perceived therapeutic advantages of SLN, the technology available so far for the fabrication of SLN is restricted to the development of nanodispersion which has not had been so encouraging. In an aqueous nanodispersion, the SLN have a tendency to undergo particle aggregation under accelerated storage conditions due to the gelation phenomenon (an irreversible conversion of low viscosity lipid based nanoparticles dispersion into a viscous gel) due to which the dispersion is usually lyophilized into a dry powder to cles (LNs) in the final product is not desirable because of their toxic effects on the mucosal lining of the GIT. Moreover, the process of lyophilization is critical as rate of freezing governs the structure and properties of the lipid crystals which finally determines its drug retention capacity during storage. Alternatively, filtration of the nanoparticles as a whole is a costly and exhaustive process due to the requirement of sophisticated equipments for retaining particles in nanosize range. Apart from the above, surfactants essentially employed in the production of SLN increase solubility of the poorly soluble/insoluble drug in the external phase. This matter is of serious concern during production and upon long term storage as it results in progressive leaching of drug from the particles to external phase which results in reduced drug loading efficiency. The above issues have been discussed in detail in literature [12].The above discussion indicates that there is a necessity to develop a method which can separate the nanoparticles from the dispersion and immobilize them in order to retain their individual morphological identity upon storage. Harvesting the SLN from the nanodispersion by surface adsorption or retention on a submicron size inert pharmaceutical excipient with good flowability, compressibility and adsorption capacity may be an excellent approach to overcome the above mentioned issues. The prepared “Adsorbed Lipid Nanoparticles” (ALN) would not only maintain the integrity of each adsorbed nanoparticle but also ease its filling into capsules or compression into tablet. To our knowledge, such a unique approach in the development of SLN delivery system has not been reported so far. However, limited studies involving the use of adsorbents to obtain lipid based granules for oral drug delivery have been reported wherein adsorbents were found to enhance the bioavailability of the drug and impart significant flow and compressibility to the final blend [13–15].The drug employed here is carvedilol phosphate, a non-selective-blocker. The drug exhibits poor aqueous solubility and highlipophilicity (log P) which makes it an excellent candidate for SLN encapsulation[16,17]. A study conducted previously in our laboratory using different types and concentration of surfactants at different pH has shown that sodium taurocholate (STC) has both minimum molar solubilization capacity and binding constant for carvedilol phosphate at pH 7.2 [18]. Therefore, the objective of the present work was to develop SLN of carvedilol phosphate using STC as a stabilizing agent and pH 7.2 phosphate buffer as dispersion medium, and improve the physicochemical properties of the nanoparticles by adsorbing them onto Neusilin (magnesium aluminometasilicate), an inert pharmaceutical excipient used as adsorbent. 2. Materials and methods [ Last edited by kaichang on 2011-1-9 at 13:15 ] |
» 猜你喜欢
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有6人回复
有院领导为了换新车,用横向课题经费买了俩车
已经有9人回复
酰胺脱乙酰基
已经有13人回复
博士延得我,科研能力直往上蹿
已经有8人回复
同年申请2项不同项目,第1个项目里不写第2个项目的信息,可以吗
已经有4人回复
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有10人回复
天津大学招2026.09的博士生,欢迎大家推荐交流(博导是本人)
已经有5人回复
遇见不省心的家人很难过
已经有22人回复
» 抢金币啦!回帖就可以得到:
中国石油大学(华东)吴传德教授团队(国家杰青)2026硕、博招生
+2/224
坐标广州,征女友
+2/114
哈工大医康学院材料模拟计算方向人才招聘
+1/83
香港科技大学(广州)黄加强课题组智能电池方向博士招聘
+1/82
广州大学“长江学者”教授团队2026年海内外高层次人才招聘(环境/化学/生物)
+1/79
欢迎报考南京农业大学植物环境适应课题组课题组2026级博士生。
+1/77
山东征女友,坐标济南
+1/61
湘潭大学“过程强化与绿色化工”创新团队补招2026年秋入学博士生
+2/38
操作求助
+1/33
香港城市大学软物质课题组现招收博士研究生 2026.09 入学
+1/32
西安交通大学前沿院/机械学院招收2026级硕博研究生!
+1/29
中南林业科技大学生物质绿色转化与功能材料课题组2026年博士招生
+1/12
【科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/7
【科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/5
广东工业大学-化学工程专业博士生招生1-2名
+1/5
考博求助
+1/4
国家“双一流”建设高校-南京林业大学-国家级青年人才团队招聘 2026级博士研究生
+1/3
华南师范大学(211)- 光电科学与工程学院 - 申请审核制(2026年4-5月份面试考核)
+2/2
澳科大招收2026年秋季入学药剂学/生物材料方向全奖博士研究生
+1/1
澳科大招收2026年秋季入学生物材料方向全奖博士研究生(3月5日截止)
+1/1
kaichang(金币+2, 翻译EPI+1):尽管只有一句,不过还是谢谢。有空就全部帮我翻译了吧。 2011-01-09 18:51:36
|
The objective of the present study was to employ suitable adsorbent with free flowing characteristics for improving the stability and physical properties of solid lipid nanoparticles (SLN) for oral administration. 本文的目的是采用能自由流动的吸附剂,来改善作口服剂之用的固体脂质纳米粒的稳定性与物理性能。 |
2楼2011-01-09 17:21:15
|
The objective of the present study was to employ suitable adsorbent with free flowing characteristicsfor improving the stability and physical properties of solid lipid nanoparticles (SLN) for oral administration. Stearic acid based nanoparticles of carvedilol phosphate were fabricated by solvent emulsification evaporation technique in sodium taurocholate solution prepared in pH 7.2 buffers (I—KH2PO4/NaOH or II—NaH2PO4/Na2HPO4) with 1% polyvinyl alcohol. 本文的目的是采用能自由流动的吸附剂,来改善作口服剂之用的固体脂质纳米粒的稳定性与物理性能。基于卡维地洛磷酸盐的硬脂酸是由溶剂乳化蒸发技术制得,该过程是在1%的聚乙烯醇产生的ph值为7.2的缓冲池中制备的牛黄胆酸钠中完成的。 |
3楼2011-01-09 18:51:08
4楼2011-01-10 00:05:25
5楼2011-01-10 01:12:07













回复此楼