| 查看: 912 | 回复: 1 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
求翻译文献
|
|||
|
Abstract: By combining the aspect of population in genetic algorithms (GAs) and the simulated annealing algorithm (SAA),a novel algorithm, called fast annealing evolutionary algorithm (FAEA), is proposed. The algorithm is similar to the annealing evolutionary algorithm (AEA), anda very fast annealing technique is adopted for the annealing procedure. By an application of the algorithm to the optimization of test functions anda comparison of the algorithm with other stochastic optimization methods, it is shown that the algorithm isa highly efficient optimization method. It was also applied in optimization of Lennard–Jones clusters and compared with other methods in this study. The results indicate that the algorithm isa good tool for the energy minimization problem. © 2002 John Wiley& Sons, Inc. J Comput Chem 23: 427–435, 2002; DOI 10.1002/jcc.10029 Key words: annealing evolutionary algorithm; global optimization; Lennard–Jones clusters Introduction Determination of global energetic minima of large molecules or atomic clusters is one of the challenging problems in computa- tional chemistry due to the large number of local minima. Because the number of local minima tends to grow exponentially with the number of molecules or atoms, the task of minimizing the energy of complicated molecules or atomic clusters is notoriously diffi- cult. To solve the problem, different optimization methods have been proposed, such as genetic algorithms, 1–5 simulated anneal- ing, 6–8 quantum annealing, 9 potential deformation, 10 hierarchical searches, 11 etc. Genetic algorithms (GAs) are known asa new kind of optimi- zation technique for tackling complicated optimization tasks. 12,13 A population of random bit (or digital) strings is used for starting solution trials. Then,a circular process of evaluation, selection, recombination, and mutation is repeated to yield an optimized solution based upon the simulation of natural selection, genetics, and evolution with Darwin’s principles of struggle for life and survival of the fittest. Therefore, GAs are based upon stochastic search heuristics wherein an explorative and an exploitative mech- anism cooperate, which is suitable to be used in optimizations of complex hypersurface witha lot of local minima or maxima. Within the past decade, applications of GAs to alloy systems, 14 atomic and molecular clusters, 15,16 molecular modeling, 17 protein design, 18 molecular recognition, 19 protein folding, 20 and confor- mation analysis 21 have been reported. Simulated annealing algorithm (SAA) isa stochastic optimiza- tion method based on the Monte Carlo importance-sampling tech- nique. 22 It starts from an initial point and takesa single point iterative strategy. The mechanism that it accept not only the evolved but also the degenerated solutions with the Metropolis acceptance criterion during its annealing procedure, makes the SAA be of the potentiality to find the global minimum instead of falling into local minima. Asa global optimization algorithm, SAA has been widely used to fitting nonconvex cost functions arising in a variety of problems, such as the fitting of curves, 23 conformation analysis, 24 analysis of atom–atom interaction, 6 and optimization of molecular clusters. 8 In this articlea novel algorithm combining the aspect of pop- ulation in GAs and simulated annealing procedure is proposed. Because this algorithm is based on the annealing evolutionary algorithm (AEA), 25 and the very fast annealing technique26,27 is adopted for the annealing procedure, it is called the fast annealing evolutionary algorithm (FAEA). To assess the algorithm, we applied FAEA toa set of standard test functions and compared the results with some other stochastic methods. This is the usual procedure for all proposed optimization methods. Furthermore, an application of the algorithm to the optimization of Lennard–Jones (LJ) clusters 28–30 is also investi- gated. It is shown that the algorithm isa good tool for energy Correspondence to: W. Cai; e-mail: wscai@ustc.edu.cn Contract/grant sponsor: Natural Science Foundation of China; contract/ grant number: 29975027 Contract/grant sponsor: Foundation of University of Science and Technology of China for Young Scientists. © 2002 John Wiley& Sons, Inc.minimization problems. Both the structure and the energy are in good agreement with theoretical and calculated results in the literature. Method Very Fast Annealing (VFA) Simulated annealing was essentially introduced as a Monte Carlo importance-sampling technique for doing large-dimension path integrals arising in statistical physics problem. The method con- sists of three functions, i.e., (1) g( x): probability density of state- space of D parameters x { xi ; i 1, D}; (2) h( x): probability density for acceptance of new cost-function given the just previous value; (3) T(k): schedule of annealing the temperature T in an- nealing-time steps k, i.e., of changing the volatility or fluctuation of the two previous probability densities. Generally, h( x) 1/(1 exp(E/T )) exp(E/T), but different g( x) and T(k) are used for different algorithms. To statistically assure that any point in x-space can be sampled infinitely often in annealing time (IOT), it suffices to prove that the products of probabilities of not generating a state x IOT for all annealing times successive to k0 yield zero, 26,27 k0 1 gk 0 (1) This is equivalent to k0 gk (2) VFA was proposed by Ingber, 26,27 in which different parameter has different annealing schedule. For a x-space of D parameters, a new solution xi [Ai , Bi ] is generated by xk1 i xk i yi Bi Ai (3) where k is annealing-time index, and yi sgnui 1 2Ti1 1 Ti 2ui 1 1 (4) where ui U[0, 1] is a random number with uniform distribution. The generating function corresponding to eq. (4) is g y i1 D 1 2yi Ti ln1 1/Ti (5) If the annealing schedule of temperature T(k) is calculated by Ti k T0i expci k1/D (6) the following equation can be obtained, k0 gk k0 i1 D 1 2yi ci 1 k (7) where ci mi exp(ni /D), and mi , ni are parameters to control the annealing schedule, which can be different for each specific problem. To simplify the calculation, in this study, a same value of mi and ni for every parameters is adopted. To compare Boltzmann annealing (BA), fast annealing (FA) and VFA, Boltzmann distribution used in BA, Cauchy distribution used in FA and the generating function g( y) in eq. (5) were illustrated in Figure 1, respectively. It is obvious that VFA has a fattest tail among them, permitting easier access to test local minima in the search for the desired global minimum. Due to the character of the generating function g( y) and annealing schedule T(k), the VFA will converge very fast. 26,27 But for complicated optimization problem it inevitably converges to local minima. Flowchart of Fast Annealing Evolutionary Algorithm (FAEA) Generally, an AEA combines the aspect of population and selec- tion procedure in GAs and the annealing procedure in SAA. The AEA improves the population of candidate solutions by selection operation instead of the single-point iterative strategy used by the SAA. Therefore, it has a larger possibility to escape from local minima than the SAA. 25 But, in our experience, for complicated optimization problem, such as the optimization of molecules or atomic clusters, the AEA often converges at a local minimum. By examination of the AEA calculations, it was found that the reason for the early convergence may be caused by the selection opera- tion. Although selection improves the fitness of the population, it will lose the diversity of the population. Therefore, in this study, selection operation is not used in the FAEA algorithm. Further- more, to make the algorithm converge effectively and guarantee that the algorithm finds the global minimum, VFA technique, similarity checks between individuals in population, and a local search procedure are adopted. The whole procedure of the FAEA is shown in Figure 2, and the following steps are included. 1. Prepare parameters for the algorithm, which include the m, n, ns (length of Markov chain), and initial temperature (T0) for the annealing schedule, population size (npop) for evolution, the number of parameters or atoms in clusters (N), and the range of each parameter. The stop criterion of the algorithm, Texit , will also be calculated by T0exp(m). 26,27 2. According to the atom number and population size, the pop- ulation is randomly initialized and evaluated. The value of every gene in each individual is generated by u(B A), where u U[0, 1] is a random number with uniform dis- tribution, and A, B are the range of the optimizing parameters. 3. According to eq. (6), calculate the current temperature T. 4. As discussed above, VFA converges very fast. It is important to keep diversity in the population in order to avoid converg- ing to local minima. Therefore, in the FAEA, a procedure to check similarity between individuals is developed, i.e., during 428 Cai and Shao • Vol. 23, No. 4 • Journal of Computational Chemistry |
» 猜你喜欢
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有14人回复
江汉大学解明教授课题组招博士研究生/博士后
已经有3人回复
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有11人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有11人回复
» 抢金币啦!回帖就可以得到:
医学超声影像负责人招聘-中国科学院赣江创新研究院
+1/977
985教授征女友
+1/247
西湖大学2026年秋季入学物理学、光学、电子信息方向博士生有名额速来!!!
+2/224
苏州国家实验室和中国科学技术大学联培博士招生
+1/179
贺电中定位于“积极作用”,是不是对基金委工作不够满意?
+1/82
龙凤Tai——写给恋人的第100封情书
+1/78
人间烟火,实则就是追求最简单的快乐
+1/75
2025难忘的时刻
+1/62
清华大学深圳国际研究生院招聘-博士后(长期有效)
+1/49
海南大学海洋技术与装备学院-科研助理招聘(可读博)--膜分离水处理方向
+1/42
海南大学海洋技术与装备学院-科研助理招聘(可读博)膜分离水处理方向
+1/39
澳大利亚麦考瑞大学(Macquarie University)国际博士硕士全额奖学金-计算机-26年中开学
+1/32
同济大学脑机智能团队脑机接口方向招生招聘
+1/27
上海交大药学院侯四化课题组招收2名2026年秋季入学申请-考核制博士生
+1/23
华南师范大学(211)- 光电科学与工程学院 - 申请审核制(2026年4-5月份面试考核)
+2/6
澳门理工大学 2026 Fall 奖学金博士招生 (AI药物与蛋白质设计,干湿结合)
+1/6
【东南大学博士后、科研助理招聘】
+1/5
【科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/5
美国密苏里大学“柔性电子”课题组诚聘博士研究生和博士后
+1/1
26储能博士申请自荐
+1/1
2楼2010-12-20 17:03:23













回复此楼