|
|
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ 前世今生(金币+50, 翻译EPI+1):万分感谢!!! 2010-11-25 14:15:08 cfk580713(金币+30):谢谢参与,辛苦了阿 2010-11-27 10:34:47
|
因为ENTPD5不能直接将ATP水解为AMP,实验结果表明在ENTPD5中加入杂合MEFs了PTEN的 S-100也不能直接将ATP水解为AMP,因此我们认为在将ATP水解为AMP的过程中,S-100中还需要其它影响因子。这些因子存在于细胞的PTEN态,却被我们忽视了。例如,当我们将纯化、重组后的ENTPD5和UMP加入到从大量组培的HeLa细胞中透析出来的S-100中后, ATP即可被水解为AMP (图4A, 1–6行)。该研究使得分离这些影响因子变简单了,因为培养HeLa细胞很容易。为了确定这些因子,我们将HeLa细胞S-100用琼脂糖Q进行分段, 收集通柱流出液,记为Q-FL ;用 300 mM NaCl冲柱,收集流出液,记为Q-30.两部分均不能将ATP水解为AMP,但是Q-30在ENTPD5 和UMP的存在下,能将ATP水解为ADP。当Q-FL和 Q-30共同存在时,ATP可以水解为AMP(图 4A, 18行)。我们从Q-30段分离得到了影响因子。将Q-30依次通过4根色谱柱,最后再通过一个微型Q柱 (左图 4B)。 Q柱用40到120 mM NaCl进行梯度洗脱并收集,每部分用ENTPD5、UMP混合液和 Q-FL段进行试验 (右下,图 4B)。目标物峰值出现在8–10部分. 该部分通过 SDS-PAGE silver staining, 两蛋白质条带接近 marker 37 和20 kDa 与活性极相关(右上图4B)。经质谱鉴定为人 UMP/CMP激酶-1 (CMPK1)。 Q-30he中UMP/CMP激酶的发现 为我们解释了为什么UMP是ATP酶活性的影响因子和ENTPD5是怎样和这种酶共同作用将ATP水解为ADP的。在这个反应中, UMP在CMPK1和ATP 的作用下将UDP磷酸化,产生ADP。 UDP在ENTPD5的作用下被水解为UMP,完成ATP到ADP的一个循环。在这个基础上,我们推测第三个蛋白因子存在于Q-FL中,并且是可以将两个ADP转化为一个ATP和一个AM的腺苷酸激酶,使得PTEN零细胞提取物中有 ATP转化为AMP的过程。为证明该推论,我们对Q-FL进行了凝胶过滤, 收集滤液在UMP、纯化、重组的ENTPD5 以及含有CMPK1的Q-30部分的条件下进行试验检测 ATP转化AMP的活性。 ATP转化为AMP活性峰值集中于 17-18 段 (上图 4C)。将这两段用western杂交进行分析,用腺苷酸激酶-1 (AK1)抗体检测, 检测到的条带与活性峰完全相关 (下图 4C)。经其他色谱检测相关性依然存在 (无数据)。我们用细菌得到重组CMPK1和AK1蛋白并将他们进行了同质分离 (图 4D, 9-12行)。用SDS-PAGE检测显示,纯化后的重组 ENTPD5是寄主细菌细胞的3倍,用PNG酶 F处理过的重组 ENTPD5的表达是寄主的2倍,表明ENTPD-5被糖基化了(图4D,10-11行)。 这些重组蛋白让我们重现了 ATP到AMP的水解过程。只有当三种酶和UMP同时存在时, ATP转化为AMP的高效过程才能进行 (图4D, 1–8行). |
|