CyRhmU.jpeg
²é¿´: 1009  |  »Ø¸´: 5
µ±Ç°Ö÷ÌâÒѾ­´æµµ¡£

cdut

Ìú³æ (ÕýʽдÊÖ)

[½»Á÷] ÅÓ¼ÓÀ³²ÂÏ뽫ÊÇ2006Äê¹ú¼ÊÊýѧ¼Ò´ó»áµÄ½¹µã

¡¡¡¡¾Ý2006Äê¹ú¼ÊÊýѧ¼Ò´ó»á¹Ù·½ÍøÕ¾½éÉÜ£¬Ò»¸öÓÐÒ»°Ù¶àÄêÀúÊ·µÄÊýѧÎÊÌâÓпÉÄÜÔÚ¼´½«ÕÙ¿ªµÄ2006Äê¹ú¼ÊÊýѧ¼Ò´ó»áÉÏÐû²¼±»½â¾ö¡£

¡¡¡¡ÈýÄêǰ£¬¶í¹úÊýѧ¼ÒGrisha Perelman²©Ê¿Ðû³ÆËûÒѾ­½â¾öÁË20ÊÀ¼Í×îÖøÃûµÄÒ»¸öÊýѧÎÊÌ⣬ÅÓ¼ÓÀ³²ÂÏë¡£Ò»Ð©ÖøÃûµÄר¼ÒÈÏΪÕâÒ»½á¹ûÊÇÕýÈ·µÄ£¬ÖÁÉÙËûÃÇÏÖÔÚ»¹Ã»ÓУ¨Ðû²¼£©ÕÒµ½Ö¤Ã÷µÄ©¶´¡£

¡¡¡¡ºÜ¶àÓвŻªµÄÊýѧ¼ÒÊÔͼ½â¾öÅÓ¼ÓÀ³²ÂÏ룬µ«ÊǶ¼Ã»Óгɹ¦¡£ÔÚ2000ÄêClay Ñо¿Ëù°Ñ¸ÃÎÊÌâÁÐΪ7¸öǧÙÒÄêÎÊÌâÖ®Ò»¡£È»¶ø£¬¶í¹úÊýѧ¼ÒGrisha PerelmanÊÔͼ¹¥¿Ë¸ÃÄÑÌâ²¢²»ÊÇΪÁ˵õ½Ò»°ÙÍòÃÀÔªµÄ½±½ð£»ÊÂʵÉÏ£¬ËûÔçÔÚ1994Äê¾ÍÓÐÒâ´ÓÈËÃǵÄÊÓÏßÖг¹µ×Ïûʧ£¬Ö±µ½8ÄêÒÔºóµÄ2003Äê5Ô£¬ËûÓÖ³öÏÖÁË£¬²¢Ðû²¼ËûÒѾ­½â¾öÁËÅÓ¼ÓÀ³²ÂÏë¡£¾¡¹Ü3ÄêÒѾ­¹ýÈ¥ÁË£¬×¨¼ÒÃÇ»¹ÔÚ¼ì²éËûµÄÖ¤Ã÷¡£×îºóµÄ¼ì²é½á¹û£¬»¹Ã»ÓÐÕýʽÐû²¼¡£ÈËÃÇÆÚ´ý×ÅÔÚ2006Äê¹ú¼ÊÊýѧ¼Ò´ó»áÉÏÄÜÓÐ×îÖյĽáÂÛ¡£

¡¡¡¡±¾½ì´ó»á½«ÓÐÁ½Î»¹«ÈϵĶ¥¼âÍØÆËר¼Ò£¬Richard Hamilton½ÌÊÚºÍJohn Morgan½ÌÊÚ½«ÔÚÏà¹Ø×¨ÌâÉÏ×ö±¨¸æ¡£ £¨Grisha Perelman²©Ê¿ÔÚËûµÄÖ¤Ã÷ÖÐÓõ½ÁËRichard Hamilton·¢Õ¹µÄ¹¤¾ß¡££©È»¶ø£¬Grisha Perelman²©Ê¿±¾ÈËÒ»Ö±²»Ô¸ÒâÔÚ¹«¿ª³¡ºÏÂ¶Ãæ£»¾¡¹ÜËû²»´òËã³öϯ±¾½ì´ó»á£¬È»¶ø²»ÈÝÖÃÒÉ£¬ÅÓ¼ÓÀ³²ÂÏ뽫ÊÇÈËÃǹØ×¢µÄ½¹µã¡£ºÜÓпÉÄÜÔÚ±¾½ì´ó»á£¬ÅÓ¼ÓÀ³²ÂÏë³ÉΪÅÓ¼ÓÀ³¶¨Àí£»±¾½ì´ó»áÒ²Òò´ËÔØÈëÊ·²á¡£


Ïà¹ØÄÚÈÝ£º
£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

¸½£ºÅÓ¼ÓÀ³Éúƽ¼ò½é


ͼ£ºý‹¼ÓÈR, £¨J.-£©H. £¨Jules-Henri Poincare 1854-1912£©

¡¡¡¡·¨‡ø”µŒW¼Ò¡£1854Äê4ÔÂ29ÈÕÉúì¶ÄÏåa£¬1912Äê7ÔÂ17ÈÕ×äì¶°ÍÀè¡£1873Äê10ÔÂÒÔµÚÒ»Ãû¿¼Èë°ÍÀè¾CºÏ¹¤¿ÆŒWУ¡£1879ÄêÒÔ”µŒWÕ“ÎÄ«@²©Ê¿ŒWλ¡£Ðý¼´È¥¿¨°º´óŒWÀíŒWÔºÈÎÖvŽŸ¡£1881Äêžé°ÍÀè´óŒW½ÌÊÚ£¬Ö±µ½È¥ÊÀ¡£

¡¡¡¡ý‹¼ÓÈRµÄÑо¿Éæ¼°”µÕ“¡¢´ú”µŒW¡¢Ž×ºÎŒW¡¢ÍØ“äŒWµÈÔS¶àîIÓò£¬×îÖØÒªµÄ¹¤×÷ÊÇÔÚ·ÖÎöŒW·½Ãæ¡£ËûÔçÆÚµÄÖ÷Òª¹¤×÷ÊÇ„“Á¢×ÔÊØº¯”µÀíÕ“£¨1878£©¡£ËûÒýßMÁ˸»¿Ë˹ȺºÍ¿ËÈRÒòȺ£¬˜‹ÔìÁ˸üÒ»°ãµÄ»ù±¾Óò¡£ËûÀûÓÃáá?íÒÔËûµÄÃû×ÖÃüÃûµÄ¼‰”µ˜‹ÔìÁË×ÔÊØº¯”µ£¬?K°l¬Fß@·Nº¯”µ×÷žé´ú”µº¯”µµÄ†ÎÖµ»¯º¯”µµÄЧÓá£1883Ä꣬Ìá³öÁËÒ»°ãµÄ†ÎÖµ»¯¶¨Àí¡£Í¬Ä꣬ËûßM¶øÑо¿Ò»°ã½âÎöº¯”µÕ“£¬Ñо¿ÁËÕûº¯”µµÄïL¸ñ¼°ÆäÅcÌ©ÀÕÕ¹é_ʽµÄϵ”µ»òº¯”µ½^Œ¦ÖµµÄÔöéLÂÊÖ®égµÄêP‚S¡£

¡¡¡¡ý‹¼ÓÈRžéÁËÑо¿ÐÐÐÇ܉µÀºÍÐlÐÇ܉µÀµÄ·€¶¨ÐÔ†–î}£¬ÔÚ1881~1886Äê°l±íµÄËÄÆªêPì¶Î¢·Ö·½³ÌËù´_¶¨µÄ·e·ÖÇú¾€µÄÕ“ÎÄÖУ¬„“Á¢ÁË΢·Ö·½³ÌµÄ¶¨ÐÔÀíÕ“¡£ËûÑо¿ÁË΢·Ö·½³ÌµÄ½âÔÚËÄ·Nî?ÐÍµÄÆæüc£¨½¹üc¡¢°°üc¡¢½Yüc¡¢ÖÐÐÄ£©¸½½üµÄÐÔ‘B¡£ËûÌá³ö¸ù“þ½âŒ¦˜OÏÞ­hµÄêP‚S£¬¿ÉÒÔÅж¨½âµÄ·€¶¨ÐÔ¡£1885Ä꣬Èðµä‡øÍõŠW˹¿¨¶þÊÀÔOÁ¢¡¸nów†–î}¡¹ª„£¬¸ü¼ÓÒýÆðý‹¼ÓÈRÑо¿ÌìówÁ¦ŒW†–î}µÄÅdȤ¡£ËûÒÔêPì¶®”ÈýówÖеăɂ€Ù|Á¿±ÈÁíÒ»‚€Ð¡µÃ¶à•rµÄÈýów†–î}µÄÖÜÆÚ½âµÄÕ“ÎÄ«@ª„¡£ß€×CÃ÷ÁËß@·NÏÞÖÆÐÔÈýów†–î}µÄÖÜÆÚ½âµÄ”µÄ¿Í¬ßBÀm½yµÄ„ÝÒ»˜Ó´ó¡£ß@ÒÔáᣬËûßMÐÐÁË´óÁ¿ÌìŒWÁ¦ówÑо¿¡£ÒýßMÁË?ußMÕ¹é_µÄ·½·¨£¬µÃ³ö‡À¸ñµÄÌìówÁ¦ŒWÓ‹Ëã¼¼Ðg¡£Ëûé_„“ÁË„ÓÁ¦Ïµ½yÀíÕ“£¬1895Äê×CÃ÷ÁË¡¸ý‹¼ÓÈR»Øšw¶¨Àí¡¹¡£ËûÔÚÌìówÁ¦ŒW·½ÃæµÄÁíÒ»ÖØÒª½Y¹ûÊÇ£¬ÔÚÒýÁ¦×÷ÓÃÏ£¬ÞD„ÓÁ÷ówµÄÐΠî³ýÁËÒÑÖªµÄÐýÞD™EÇòów¡¢²»µÈÝS™EÇòówºÍ­h îówÍ⣬߀ÓÐÈý·Ný‹¼ÓÈRÀæÐÎów´æÔÚ¡£

¡¡¡¡ý‹¼ÓÈRŒ¦”µŒWÎïÀíºÍƫ΢·Ö·½³ÌÒ²ÓÐØ•«I¡£ÓÃÀ¨È¥·¨×CÃ÷Á˵ÒÀû¿ËÀ׆–î}½âµÄ´æÔÚÐÔ£¨1890£©£¬ß@Ò»·½·¨áá?í´Ùʹλ„ÝÕ“ÓÐаlÕ¹¡£Ëû߀Ñо¿À­ÆÕÀ­Ë¹Ëã×ÓµÄÌØáçÖµ†–î}£¬½o³öÁËÌØáçÖµºÍÌØá纯”µ´æÔÚÐԵćÀ¸ñ×CÃ÷£¨1894£©¡£ËûÔÚ·e·Ö·½³ÌÖÐÒýßMÑ}…¢”µ·½·¨£¬´ÙßMÁ˸¥À׵»ôÄ·ÀíÕ“µÄ°lÕ¹¡£

¡¡¡¡ý‹¼ÓÈRŒ¦¬F´ú”µŒWÁíÒ»ÖØÒªµÄÓ°í‘ÊÇ„“Á¢½MºÏÍØ“äŒW¡£ËûÒýßMØ?µÙ”µ¡¢“Ïϵ”µºÍ»ù±¾ÈºµÈÖØÒª¸ÅÄ„“ÔìÁ÷ÐεÄÈý½ÇÆÊ·Ö¡¢†Î¼ƒÑ}ºÏÐΡ¢ÖØÐÄÖØ·Ö¡¢Œ¦Å¼Ñ}ºÏÐΡ¢Ñ}ºÏÐεÄêPßBϵ”µ¾Øê‡µÈ¹¤¾ß£¬½èÖúËü‚ƒÍÆ?VšWÀ­¶àÃæów¶¨Àí£¬³ÉžéšWÀ­-ý‹¼ÓÈR¹«Ê½£¬?K×CÃ÷Á÷ÐεÄͬÕ{Œ¦Å¼¶¨Àí¡£Ëû߀Ìá³öý‹¼ÓÈR²ÂÏë¡£ÔÚ¡¸ý‹¼ÓÈRµÄ×îáᶨÀí¡¹ÖУ¬Ëû°ÑÏÞÖÆÐÔÈýów†–î}µÄÖÜÆÚ½âµÄ´æÔÚ†–î}šw½Yžé?M×ãij·N—l¼þµÄÆ½ÃæßBÀm׃“Q²»„ÓücµÄ´æÔÚ†–î}¡£

¡¡¡¡ý‹¼ÓÈRÔÚ”µÕ“ºÍ´ú”µŒW·½ÃæµÄ¹¤×÷²»¶à£¬ËûµÄ<<ÓÐÀ픵ÓòÉϵĴú”µŽ×ºÎŒW>>£¨1901£©é_„“ÁË?G·¬ˆD·½³ÌµÄÓÐÀí½âµÄÑо¿¡£Ëû¶¨ÁxÁËÇú¾€µÄÖÈ”µ£¬³Éžé?G·¬ˆDŽ×ºÎµÄÖØÒªÑо¿Œ¦Ïó¡£ËûÔÚ´ú”µŒWÖÐÒýßMȺ´ú”µ£¨Group Algebra£©?K×CÃ÷Æä·Ö½â¶¨Àí¡£µÚÒ»´ÎÒýßM´ú”µÖÐ×óÀíÏëºÍÓÒÀíÏëµÄ¸ÅÄî¡£×CÃ÷ÁËÀî´ú”µµÚÈý»ù±¾¶¨Àí£¨The third foundamental theorem of Lie Algebra£© ¼°¿²Ø? –-ºÀ˹¶à·ò¹«Ê½£¨1899£©¡£ß€ÒýßMÀî´ú”µµÄ°ü½j´ú”µ£¨Borel Algebra£©£¬?KŒ¦Æä»ù¼ÓÒÔÃèÊö£¬×CÃ÷ÁËý‹¼ÓÈR-²®¿Ë»ô·ò-¾SÌØ¶¨Àí¡£

¡¡¡¡ý‹¼ÓÈRŒ¦½›µäÎïÀíŒWÓÐÉîÈë¶ø?V·ºµÄÑо¿£¬Œ¦ªMÁxÏàŒ¦Õ“µÄ„“Á¢ÓÐØ•«I¡£Ëû?Ä1899Äêé_ʼÑо¿ëŠ×ÓÀíÕ“£¬Ê×ÏÈÕJ×Rµ½Âå‚?´Ä׃“Q˜‹³ÉȺ¡£

¡¡¡¡ý‹¼ÓÈRµÄÕÜŒWÖø×÷<<¿ÆŒWÅc¼ÙÔO>>£¨1902£©¡¢<<¿ÆŒWµÄƒrÖµ>>£¨1905£©¡¢<<¿ÆŒWÅc·½·¨>>£¨1909£©Í¬˜ÓÓÐÖøÖØ´óµÄÓ°í‘¡£

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­
Millennium Problems


Poincar¨¦ Conjecture
If we stretch a rubber band around the surface of an apple, then we can shrink it down to a point by moving it slowly, without tearing it and without allowing it to leave the surface. On the other hand, if we imagine that the same rubber band has somehow been stretched in the appropriate direction around a doughnut, then there is no way of shrinking it to a point without breaking either the rubber band or the doughnut. We say the surface of the apple is "simply connected," but that the surface of the doughnut is not. Poincar¨¦, almost a hundred years ago, knew that a two dimensional sphere is essentially characterized by this property of simple connectivity, and asked the corresponding question for the three dimensional sphere (the set of points in four dimensional space at unit distance from the origin). This question turned out to be extraordinarily difficult, and mathematicians have been struggling with it ever since.



£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

  ¡¡2006Äê¹ú¼ÊÊýѧ¼Ò´ó»á±¨¸æÕßÈ·¶¨


    2006ÄêÂíµÂÀïÊÀ½çÊýѧ¼Ò´ó»áÑûÇ뱨¸æÈËÃûµ¥ÒÑÈ·¶¨¡£ÑûÇ뱨¸æÈ˰üÀ¨Öйú´ó½»ªÈË1ÈË--ÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿Ôº³ÂÖ¾Ã÷Ñо¿Ô±; ÔÚÃÀ¹ú¹¤×÷µÄ»ªÈË4Ãû(3λ45·ÖÖÓ, һλһСʱ).

¡¡¡¡³ÂÖ¾Ã÷Ñо¿Ô±½«ÓÚ2006Äê8ÔÂÔÚÎ÷°àÑÀÂíµÂÀï¾ÙÐеĵڶþÊ®Îå½ì¹ú¼ÊÊýѧ¼Ò´ó»áÉÏSession 16(Numerical Analysis and Scientific Computing)ÉÏ×÷45·ÖÖÓÑûÇ뱨¸æ¡£

¡¡¡¡³ÂÖ¾Ã÷Ñо¿Ô±ÏÖÈÎÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿Ôº¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËãÑо¿Ëù³£Îñ¸±Ëù³¤£¬¿ÆÑ§Ó빤³Ì¼ÆËã¹ú¼ÒÖØµãʵÑéÊÒ¸±Ö÷ÈΡ£Ö÷ÒªÑо¿ÁìÓòΪÊýÖµ·ÖÎöÓë¿ÆÑ§¼ÆËã£¬ÖØµãΪ·ÇÏßÐÔÆ«Î¢·Ö·½³ÌµÄÓÐÏÞÔª×ÔÊÊÓ¦·½·¨ºÍ¶à¿×½éÖÊÖÐÉøÁ÷ÎÊÌâµÄ¶à³ß¶È¼ÆËã·½·¨¡£½üÄêÀ´ÔÚÍÖÔ²±ä·Ö²»µÈʽµÄºóÑéÎó²î·ÖÎö¡¢·ÇÏßÐÔ¶ÔÁ÷À©É¢·½³ÌµÄ×ÔÊÊÓ¦ÓÐÏÞÔª·½·¨¡¢²¨µÄÉ¢ÉäÎÊÌâµÄ×ÔÊÊÓ¦PML¼¼ÊõºÍ¶à¿×½éÖÊÖꬻú¾®ÆæÐÔÎÊÌâµÄ¶à³ß¶È¼ÆËãµÈ·½Ãæ»ñµÃ¶àÏîÖØÒª³É¹û¡£ËûÔøÓÚ1999ÄêÈëÑ¡Öйú¿ÆÑ§Ôº¡°°ÙÈ˼ƻ®¡±¡¢ 2000Äê»ñ¹ú¼Ò½Ü³öÇàÄê¿ÆÑ§»ù½ð¡¢2001»ñ·ë¿µ¿ÆÑ§¼ÆËã½±¡£

À´Ô´£ºÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿ÔºÍøÕ¾¡¢CAM Digest

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­
ICM2006

Welcome to the ICM2006 website

On behalf of the Organizing Committee, we are very pleased to invite you to attend the International Congress of Mathematicians to be held in Madrid (Spain) from 22 to 30 August, 2006. On this webpage you will find all the information you need to plan your participation at the ICM2006.

Following the long standing tradition of these congresses, ICM2006 will be a major scientific event, bringing together mathematicians from all over the world, and demonstrating the vital role that mathematics play in our society. We very much hope you will be able to attend it.

Please add this page to your bookmarks and ask your colleagues to do so too. We hope you will visit this site regularly to keep up to date with the developments of the organization of the ICM2006. We are looking forward to having you here.

Welcome to our site and see you in Madrid!

Manuel de Le¨®n
President of the Organizing Committee

Carlos Andradas
Vicepresident General

http://www.icm2006.org/paginas/?pagina=home_ing














»Ø¸´´ËÂ¥
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

Franks

ľ³æ (ÕýʽдÊÖ)

Dr

²»ÊÇÒѾ­½â¾öÁËÂð£¿

²»ÊÇÒѾ­±»Öìì䯽½ÌÊÚµÈÈ˽â¾öÁËÂð£¿
lovescience,enjoyscientificlife
2Â¥2006-06-11 17:14:15
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

westwolf

ľ³æ (ÖøÃûдÊÖ)


1

²»´í£¬ÎÒ¿ÆÆÕÁËһϡ£Ð»Ð»£¡
ÎÄÕÂÖС°°ÍÀè¾CºÏ¹¤¿ÆŒWУ¡±µÄ·­Òë¿ÉÄÜÓÐÎÊÌ⣨Äã¿ÉÄÜÊÇ×ªÔØµÄ£©¡£ËüµÄÔ­ÎÄÓ¦¸ÃÊÇÉcole Polytechnique de Paris.ÊÇÈ«Çó·Ç³£ÖøÃûµÄ´óѧ֮һ£¨¿ÉÄÜÔÚ·¨¹úÅÅÃûµÚÒ»£©¡£Ò»°ã´ó¼ÒµÄ·­ÒëÊÇ£º°ÍÀèÀí¹¤´óѧ¡£
3Â¥2006-06-11 19:00:16
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

1

4Â¥2006-06-11 19:37:36
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

zhangjiewx

гæ (³õÈëÎÄ̳)

0.5

×îºÃÄܹ»×ö¸öPPT¿´¿´
5Â¥2006-06-11 22:00:04
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

0.5

6Â¥2006-06-15 09:13:11
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
Ïà¹Ø°æ¿éÌø×ª ÎÒÒª¶©ÔÄÂ¥Ö÷ cdut µÄÖ÷Ìâ¸üÐÂ
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û