| ²é¿´: 1009 | »Ø¸´: 5 | |||
| µ±Ç°Ö÷ÌâÒѾ´æµµ¡£ | |||
cdutÌú³æ (ÕýʽдÊÖ)
|
[½»Á÷]
ÅÓ¼ÓÀ³²ÂÏ뽫ÊÇ2006Äê¹ú¼ÊÊýѧ¼Ò´ó»áµÄ½¹µã
|
||
|
¡¡¡¡¾Ý2006Äê¹ú¼ÊÊýѧ¼Ò´ó»á¹Ù·½ÍøÕ¾½éÉÜ£¬Ò»¸öÓÐÒ»°Ù¶àÄêÀúÊ·µÄÊýѧÎÊÌâÓпÉÄÜÔÚ¼´½«ÕÙ¿ªµÄ2006Äê¹ú¼ÊÊýѧ¼Ò´ó»áÉÏÐû²¼±»½â¾ö¡£ ¡¡¡¡ÈýÄêǰ£¬¶í¹úÊýѧ¼ÒGrisha Perelman²©Ê¿Ðû³ÆËûÒѾ½â¾öÁË20ÊÀ¼Í×îÖøÃûµÄÒ»¸öÊýѧÎÊÌ⣬ÅÓ¼ÓÀ³²ÂÏë¡£Ò»Ð©ÖøÃûµÄר¼ÒÈÏΪÕâÒ»½á¹ûÊÇÕýÈ·µÄ£¬ÖÁÉÙËûÃÇÏÖÔÚ»¹Ã»ÓУ¨Ðû²¼£©ÕÒµ½Ö¤Ã÷µÄ©¶´¡£ ¡¡¡¡ºÜ¶àÓвŻªµÄÊýѧ¼ÒÊÔͼ½â¾öÅÓ¼ÓÀ³²ÂÏ룬µ«ÊǶ¼Ã»Óгɹ¦¡£ÔÚ2000ÄêClay Ñо¿Ëù°Ñ¸ÃÎÊÌâÁÐΪ7¸öǧÙÒÄêÎÊÌâÖ®Ò»¡£È»¶ø£¬¶í¹úÊýѧ¼ÒGrisha PerelmanÊÔͼ¹¥¿Ë¸ÃÄÑÌâ²¢²»ÊÇΪÁ˵õ½Ò»°ÙÍòÃÀÔªµÄ½±½ð£»ÊÂʵÉÏ£¬ËûÔçÔÚ1994Äê¾ÍÓÐÒâ´ÓÈËÃǵÄÊÓÏßÖг¹µ×Ïûʧ£¬Ö±µ½8ÄêÒÔºóµÄ2003Äê5Ô£¬ËûÓÖ³öÏÖÁË£¬²¢Ðû²¼ËûÒѾ½â¾öÁËÅÓ¼ÓÀ³²ÂÏë¡£¾¡¹Ü3ÄêÒѾ¹ýÈ¥ÁË£¬×¨¼ÒÃÇ»¹ÔÚ¼ì²éËûµÄÖ¤Ã÷¡£×îºóµÄ¼ì²é½á¹û£¬»¹Ã»ÓÐÕýʽÐû²¼¡£ÈËÃÇÆÚ´ý×ÅÔÚ2006Äê¹ú¼ÊÊýѧ¼Ò´ó»áÉÏÄÜÓÐ×îÖյĽáÂÛ¡£ ¡¡¡¡±¾½ì´ó»á½«ÓÐÁ½Î»¹«ÈϵĶ¥¼âÍØÆËר¼Ò£¬Richard Hamilton½ÌÊÚºÍJohn Morgan½ÌÊÚ½«ÔÚÏà¹Ø×¨ÌâÉÏ×ö±¨¸æ¡£ £¨Grisha Perelman²©Ê¿ÔÚËûµÄÖ¤Ã÷ÖÐÓõ½ÁËRichard Hamilton·¢Õ¹µÄ¹¤¾ß¡££©È»¶ø£¬Grisha Perelman²©Ê¿±¾ÈËÒ»Ö±²»Ô¸ÒâÔÚ¹«¿ª³¡ºÏÂ¶Ãæ£»¾¡¹ÜËû²»´òËã³öϯ±¾½ì´ó»á£¬È»¶ø²»ÈÝÖÃÒÉ£¬ÅÓ¼ÓÀ³²ÂÏ뽫ÊÇÈËÃǹØ×¢µÄ½¹µã¡£ºÜÓпÉÄÜÔÚ±¾½ì´ó»á£¬ÅÓ¼ÓÀ³²ÂÏë³ÉΪÅÓ¼ÓÀ³¶¨Àí£»±¾½ì´ó»áÒ²Òò´ËÔØÈëÊ·²á¡£ Ïà¹ØÄÚÈÝ£º £££££££££££££££££££££££££££££££££££ ¸½£ºÅÓ¼ÓÀ³Éúƽ¼ò½é ![]() ͼ£ºý‹¼ÓÈR, £¨J.-£©H. £¨Jules-Henri Poincare 1854-1912£© ¡¡¡¡·¨‡ø”µŒW¼Ò¡£1854Äê4ÔÂ29ÈÕÉúì¶ÄÏåa£¬1912Äê7ÔÂ17ÈÕ×äì¶°ÍÀè¡£1873Äê10ÔÂÒÔµÚÒ»Ãû¿¼Èë°ÍÀè¾CºÏ¹¤¿ÆŒWУ¡£1879ÄêÒÔ”µŒWÕ“ÎÄ«@²©Ê¿ŒWλ¡£Ðý¼´È¥¿¨°º´óŒWÀíŒWÔºÈÎÖvŽŸ¡£1881Äêžé°ÍÀè´óŒW½ÌÊÚ£¬Ö±µ½È¥ÊÀ¡£ ¡¡¡¡ý‹¼ÓÈRµÄÑо¿Éæ¼°”µÕ“¡¢´ú”µŒW¡¢Ž×ºÎŒW¡¢ÍØ“äŒWµÈÔS¶àîIÓò£¬×îÖØÒªµÄ¹¤×÷ÊÇÔÚ·ÖÎöŒW·½Ãæ¡£ËûÔçÆÚµÄÖ÷Òª¹¤×÷ÊÇ„“Á¢×ÔÊØº¯”µÀíÕ“£¨1878£©¡£ËûÒýßMÁ˸»¿Ë˹ȺºÍ¿ËÈRÒòȺ£¬˜‹ÔìÁ˸üÒ»°ãµÄ»ù±¾Óò¡£ËûÀûÓÃáá?íÒÔËûµÄÃû×ÖÃüÃûµÄ¼‰”µ˜‹ÔìÁË×ÔÊØº¯”µ£¬?K°l¬Fß@·Nº¯”µ×÷žé´ú”µº¯”µµÄ†ÎÖµ»¯º¯”µµÄЧÓá£1883Ä꣬Ìá³öÁËÒ»°ãµÄ†ÎÖµ»¯¶¨Àí¡£Í¬Ä꣬ËûßM¶øÑо¿Ò»°ã½âÎöº¯”µÕ“£¬Ñо¿ÁËÕûº¯”µµÄïL¸ñ¼°ÆäÅcÌ©ÀÕÕ¹é_ʽµÄϵ”µ»òº¯”µ½^Œ¦ÖµµÄÔöéLÂÊÖ®égµÄêP‚S¡£ ¡¡¡¡ý‹¼ÓÈRžéÁËÑо¿ÐÐÐÇ܉µÀºÍÐlÐÇ܉µÀµÄ·€¶¨ÐÔ†–î}£¬ÔÚ1881~1886Äê°l±íµÄËÄÆªêPì¶Î¢·Ö·½³ÌËù´_¶¨µÄ·e·ÖÇú¾€µÄÕ“ÎÄÖУ¬„“Á¢ÁË΢·Ö·½³ÌµÄ¶¨ÐÔÀíÕ“¡£ËûÑо¿ÁË΢·Ö·½³ÌµÄ½âÔÚËÄ·Nî?ÐÍµÄÆæüc£¨½¹üc¡¢°°üc¡¢½Yüc¡¢ÖÐÐÄ£©¸½½üµÄÐÔ‘B¡£ËûÌá³ö¸ù“þ½âŒ¦˜OÏÞhµÄêP‚S£¬¿ÉÒÔÅж¨½âµÄ·€¶¨ÐÔ¡£1885Ä꣬Èðµä‡øÍõŠW˹¿¨¶þÊÀÔOÁ¢¡¸nów†–î}¡¹ª„£¬¸ü¼ÓÒýÆðý‹¼ÓÈRÑо¿ÌìówÁ¦ŒW†–î}µÄÅdȤ¡£ËûÒÔêPì¶®”ÈýówÖеăɂ€Ù|Á¿±ÈÁíÒ»‚€Ð¡µÃ¶à•rµÄÈýów†–î}µÄÖÜÆÚ½âµÄÕ“ÎÄ«@ª„¡£ß€×CÃ÷ÁËß@·NÏÞÖÆÐÔÈýów†–î}µÄÖÜÆÚ½âµÄ”µÄ¿Í¬ßBÀm½yµÄ„ÝÒ»˜Ó´ó¡£ß@ÒÔáᣬËûßMÐÐÁË´óÁ¿ÌìŒWÁ¦ówÑо¿¡£ÒýßMÁË?ußMÕ¹é_µÄ·½·¨£¬µÃ³ö‡À¸ñµÄÌìówÁ¦ŒWÓ‹Ëã¼¼Ðg¡£Ëûé_„“ÁË„ÓÁ¦Ïµ½yÀíÕ“£¬1895Äê×CÃ÷ÁË¡¸ý‹¼ÓÈR»Øšw¶¨Àí¡¹¡£ËûÔÚÌìówÁ¦ŒW·½ÃæµÄÁíÒ»ÖØÒª½Y¹ûÊÇ£¬ÔÚÒýÁ¦×÷ÓÃÏ£¬ÞD„ÓÁ÷ówµÄÐÎ î³ýÁËÒÑÖªµÄÐýÞD™EÇòów¡¢²»µÈÝS™EÇòówºÍh îówÍ⣬߀ÓÐÈý·Ný‹¼ÓÈRÀæÐÎów´æÔÚ¡£ ¡¡¡¡ý‹¼ÓÈRŒ¦”µŒWÎïÀíºÍƫ΢·Ö·½³ÌÒ²ÓÐØ•«I¡£ÓÃÀ¨È¥·¨×CÃ÷Á˵ÒÀû¿ËÀ׆–î}½âµÄ´æÔÚÐÔ£¨1890£©£¬ß@Ò»·½·¨áá?í´Ùʹλ„ÝÕ“ÓÐаlÕ¹¡£Ëû߀Ñо¿ÀÆÕÀ˹Ëã×ÓµÄÌØáçÖµ†–î}£¬½o³öÁËÌØáçÖµºÍÌØá纯”µ´æÔÚÐԵćÀ¸ñ×CÃ÷£¨1894£©¡£ËûÔÚ·e·Ö·½³ÌÖÐÒýßMÑ}…¢”µ·½·¨£¬´ÙßMÁ˸¥À׵»ôÄ·ÀíÕ“µÄ°lÕ¹¡£ ¡¡¡¡ý‹¼ÓÈRŒ¦¬F´ú”µŒWÁíÒ»ÖØÒªµÄÓ°í‘ÊÇ„“Á¢½MºÏÍØ“äŒW¡£ËûÒýßMØ?µÙ”µ¡¢“Ïϵ”µºÍ»ù±¾ÈºµÈÖØÒª¸ÅÄ„“ÔìÁ÷ÐεÄÈý½ÇÆÊ·Ö¡¢†Î¼ƒÑ}ºÏÐΡ¢ÖØÐÄÖØ·Ö¡¢Œ¦Å¼Ñ}ºÏÐΡ¢Ñ}ºÏÐεÄêPßBϵ”µ¾Øê‡µÈ¹¤¾ß£¬½èÖúËü‚ƒÍÆ?VšWÀ¶àÃæów¶¨Àí£¬³ÉžéšWÀ-ý‹¼ÓÈR¹«Ê½£¬?K×CÃ÷Á÷ÐεÄͬÕ{Œ¦Å¼¶¨Àí¡£Ëû߀Ìá³öý‹¼ÓÈR²ÂÏë¡£ÔÚ¡¸ý‹¼ÓÈRµÄ×îáᶨÀí¡¹ÖУ¬Ëû°ÑÏÞÖÆÐÔÈýów†–î}µÄÖÜÆÚ½âµÄ´æÔÚ†–î}šw½Yžé?M×ãij·N—l¼þµÄÆ½ÃæßBÀm׃“Q²»„ÓücµÄ´æÔÚ†–î}¡£ ¡¡¡¡ý‹¼ÓÈRÔÚ”µÕ“ºÍ´ú”µŒW·½ÃæµÄ¹¤×÷²»¶à£¬ËûµÄ<<ÓÐÀ픵ÓòÉϵĴú”µŽ×ºÎŒW>>£¨1901£©é_„“ÁË?G·¬ˆD·½³ÌµÄÓÐÀí½âµÄÑо¿¡£Ëû¶¨ÁxÁËÇú¾€µÄÖÈ”µ£¬³Éžé?G·¬ˆDŽ×ºÎµÄÖØÒªÑо¿Œ¦Ïó¡£ËûÔÚ´ú”µŒWÖÐÒýßMȺ´ú”µ£¨Group Algebra£©?K×CÃ÷Æä·Ö½â¶¨Àí¡£µÚÒ»´ÎÒýßM´ú”µÖÐ×óÀíÏëºÍÓÒÀíÏëµÄ¸ÅÄî¡£×CÃ÷ÁËÀî´ú”µµÚÈý»ù±¾¶¨Àí£¨The third foundamental theorem of Lie Algebra£© ¼°¿²Ø? –-ºÀ˹¶à·ò¹«Ê½£¨1899£©¡£ß€ÒýßMÀî´ú”µµÄ°ü½j´ú”µ£¨Borel Algebra£©£¬?KŒ¦Æä»ù¼ÓÒÔÃèÊö£¬×CÃ÷ÁËý‹¼ÓÈR-²®¿Ë»ô·ò-¾SÌØ¶¨Àí¡£ ¡¡¡¡ý‹¼ÓÈRŒ¦½›µäÎïÀíŒWÓÐÉîÈë¶ø?V·ºµÄÑо¿£¬Œ¦ªMÁxÏàŒ¦Õ“µÄ„“Á¢ÓÐØ•«I¡£Ëû?Ä1899Äêé_ʼÑо¿ëŠ×ÓÀíÕ“£¬Ê×ÏÈÕJ×Rµ½Âå‚?´Ä׃“Q˜‹³ÉȺ¡£ ¡¡¡¡ý‹¼ÓÈRµÄÕÜŒWÖø×÷<<¿ÆŒWÅc¼ÙÔO>>£¨1902£©¡¢<<¿ÆŒWµÄƒrÖµ>>£¨1905£©¡¢<<¿ÆŒWÅc·½·¨>>£¨1909£©Í¬˜ÓÓÐÖøÖØ´óµÄÓ°í‘¡£ £££££££££££££££££££££££££££££££££££ Millennium Problems Poincar¨¦ Conjecture If we stretch a rubber band around the surface of an apple, then we can shrink it down to a point by moving it slowly, without tearing it and without allowing it to leave the surface. On the other hand, if we imagine that the same rubber band has somehow been stretched in the appropriate direction around a doughnut, then there is no way of shrinking it to a point without breaking either the rubber band or the doughnut. We say the surface of the apple is "simply connected," but that the surface of the doughnut is not. Poincar¨¦, almost a hundred years ago, knew that a two dimensional sphere is essentially characterized by this property of simple connectivity, and asked the corresponding question for the three dimensional sphere (the set of points in four dimensional space at unit distance from the origin). This question turned out to be extraordinarily difficult, and mathematicians have been struggling with it ever since. ![]() £££££££££££££££££££££££££££££££££££ ¡¡2006Äê¹ú¼ÊÊýѧ¼Ò´ó»á±¨¸æÕßÈ·¶¨ 2006ÄêÂíµÂÀïÊÀ½çÊýѧ¼Ò´ó»áÑûÇ뱨¸æÈËÃûµ¥ÒÑÈ·¶¨¡£ÑûÇ뱨¸æÈ˰üÀ¨Öйú´ó½»ªÈË1ÈË--ÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿Ôº³ÂÖ¾Ã÷Ñо¿Ô±; ÔÚÃÀ¹ú¹¤×÷µÄ»ªÈË4Ãû(3λ45·ÖÖÓ, һλһСʱ). ¡¡¡¡³ÂÖ¾Ã÷Ñо¿Ô±½«ÓÚ2006Äê8ÔÂÔÚÎ÷°àÑÀÂíµÂÀï¾ÙÐеĵڶþÊ®Îå½ì¹ú¼ÊÊýѧ¼Ò´ó»áÉÏSession 16(Numerical Analysis and Scientific Computing)ÉÏ×÷45·ÖÖÓÑûÇ뱨¸æ¡£ ¡¡¡¡³ÂÖ¾Ã÷Ñо¿Ô±ÏÖÈÎÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿Ôº¼ÆËãÊýѧÓë¿ÆÑ§¹¤³Ì¼ÆËãÑо¿Ëù³£Îñ¸±Ëù³¤£¬¿ÆÑ§Ó빤³Ì¼ÆËã¹ú¼ÒÖØµãʵÑéÊÒ¸±Ö÷ÈΡ£Ö÷ÒªÑо¿ÁìÓòΪÊýÖµ·ÖÎöÓë¿ÆÑ§¼ÆËã£¬ÖØµãΪ·ÇÏßÐÔÆ«Î¢·Ö·½³ÌµÄÓÐÏÞÔª×ÔÊÊÓ¦·½·¨ºÍ¶à¿×½éÖÊÖÐÉøÁ÷ÎÊÌâµÄ¶à³ß¶È¼ÆËã·½·¨¡£½üÄêÀ´ÔÚÍÖÔ²±ä·Ö²»µÈʽµÄºóÑéÎó²î·ÖÎö¡¢·ÇÏßÐÔ¶ÔÁ÷À©É¢·½³ÌµÄ×ÔÊÊÓ¦ÓÐÏÞÔª·½·¨¡¢²¨µÄÉ¢ÉäÎÊÌâµÄ×ÔÊÊÓ¦PML¼¼ÊõºÍ¶à¿×½éÖÊÖꬻú¾®ÆæÐÔÎÊÌâµÄ¶à³ß¶È¼ÆËãµÈ·½Ãæ»ñµÃ¶àÏîÖØÒª³É¹û¡£ËûÔøÓÚ1999ÄêÈëÑ¡Öйú¿ÆÑ§Ôº¡°°ÙÈ˼ƻ®¡±¡¢ 2000Äê»ñ¹ú¼Ò½Ü³öÇàÄê¿ÆÑ§»ù½ð¡¢2001»ñ·ë¿µ¿ÆÑ§¼ÆËã½±¡£ À´Ô´£ºÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿ÔºÍøÕ¾¡¢CAM Digest £££££££££££££££££££££££££££££££££££ ICM2006 Welcome to the ICM2006 website On behalf of the Organizing Committee, we are very pleased to invite you to attend the International Congress of Mathematicians to be held in Madrid (Spain) from 22 to 30 August, 2006. On this webpage you will find all the information you need to plan your participation at the ICM2006. Following the long standing tradition of these congresses, ICM2006 will be a major scientific event, bringing together mathematicians from all over the world, and demonstrating the vital role that mathematics play in our society. We very much hope you will be able to attend it. Please add this page to your bookmarks and ask your colleagues to do so too. We hope you will visit this site regularly to keep up to date with the developments of the organization of the ICM2006. We are looking forward to having you here. Welcome to our site and see you in Madrid! Manuel de Le¨®n President of the Organizing Committee Carlos Andradas Vicepresident General http://www.icm2006.org/paginas/?pagina=home_ing |
» ²ÂÄãϲ»¶
ÇëÎÊÄÄÀï¿ÉÒÔÓÐÇàBÉêÇëµÄ±¾×Ó¿ÉÒÔ½è¼øÒ»Ï¡£
ÒѾÓÐ4È˻ظ´
Õæ³ÏÇóÖú£ºÊÖÀïµÄÊ¡Éç¿ÆÏîÄ¿½áÏîÒªÇóÖ÷³ÖÈËһƪÖÐÎĺËÐÄ£¬ÓÐʲôÇþµÀÄÜ·¢ºËÐÄÂð
ÒѾÓÐ6È˻ظ´
º¢×ÓÈ·ÕïÓÐÖжÈ×¢ÒâÁ¦È±ÏÝ
ÒѾÓÐ14È˻ظ´
Èý¼×»ùµâ»¯ÑÇí¿µÄÑõ»¯·´Ó¦
ÒѾÓÐ4È˻ظ´
ÇëÎÊÏ´ó¼ÒΪʲôÕâ¸öÁåľżÁª¼¸ºõ²»·´Ó¦ÄØ
ÒѾÓÐ5È˻ظ´
ÇëÎÊÓÐÆÀÖ°³Æ£¬°Ñ¿ÆÑнÌѧҵ¼¨Ëã·ÖÅÅÐòµÄ¸ßУÂð
ÒѾÓÐ5È˻ظ´
2025ÀäÞøÑ§Ê²Ã´Ê±ºò³ö½á¹û
ÒѾÓÐ3È˻ظ´
Ìì½ò¹¤Òµ´óѧ֣Áø´ºÍŶӻ¶Ó»¯Ñ§»¯¹¤¡¢¸ß·Ö×Ó»¯Ñ§»òÓлúºÏ³É·½ÏòµÄ²©Ê¿ÉúºÍ˶ʿÉú¼ÓÈë
ÒѾÓÐ4È˻ظ´
¿µ¸´´óѧ̩ɽѧÕßÖÜì÷»ÝÍŶÓÕÐÊÕ²©Ê¿Ñо¿Éú
ÒѾÓÐ6È˻ظ´
AIÂÛÎÄд×÷¹¤¾ß£ºÊÇ¿ÆÑмÓËÙÆ÷»¹ÊÇѧÊõ×÷±×Æ÷£¿
ÒѾÓÐ3È˻ظ´
Franks
ľ³æ (ÕýʽдÊÖ)
Dr
- Ó¦Öú: 1 (Ó×¶ùÔ°)
- ½ð±Ò: 2284.2
- É¢½ð: 9
- ºì»¨: 3
- Ìû×Ó: 751
- ÔÚÏß: 399.3Сʱ
- ³æºÅ: 90477
- ×¢²á: 2005-09-01
- רҵ: ¹¦ÄÜÓëÖÇÄܸ߷Ö×Ó

2Â¥2006-06-11 17:14:15
westwolf
ľ³æ (ÖøÃûдÊÖ)
- Ó¦Öú: 3 (Ó×¶ùÔ°)
- ¹ó±ö: 2.5
- ½ð±Ò: 3732.4
- É¢½ð: 954
- ºì»¨: 5
- Ìû×Ó: 1338
- ÔÚÏß: 55.4Сʱ
- ³æºÅ: 120650
- ×¢²á: 2005-12-03
- ÐÔ±ð: GG
- רҵ: ÎÞ»ú·Ç½ðÊô»ù¸´ºÏ²ÄÁÏ
3Â¥2006-06-11 19:00:16
1
![]() |
4Â¥2006-06-11 19:37:36
zhangjiewx
гæ (³õÈëÎÄ̳)
- Ó¦Öú: 0 (Ó×¶ùÔ°)
- ½ð±Ò: 5.1
- Ìû×Ó: 8
- ÔÚÏß:
- ³æºÅ: 247275
- ×¢²á: 2006-05-01
- רҵ: ¼ÆËãÊýѧ
5Â¥2006-06-11 22:00:04
0.5
![]() ![]() ![]() ![]() |
6Â¥2006-06-15 09:13:11




















»Ø¸´´ËÂ¥

