| 查看: 1057 | 回复: 5 | |||
| 当前主题已经存档。 | |||
[交流]
庞加莱猜想将是2006年国际数学家大会的焦点
|
|||
|
??????2006??????????????????????????????????????????????п?????????????2006????????????????????????? ????????????????????Grisha Perelman?????????????????20????????????????????????????????Щ?????????????????????????????????????????У???????????????????? ????????в???????????????????????????????г??????2000??Clay ?о?????????????7?????????????????????????????Grisha Perelman??????????????????????????????????????????????1994??????????????????г???????????8??????2003??5??????????????????????????????????????????3?????????????????????????????????????????????????????????????????2006??????????????????????????? ??????????????λ????????????????Richard Hamilton?????John Morgan????????????????????档 ??Grisha Perelman???????????????????Richard Hamilton????????????????Grisha Perelman?????????????????????????棻??????????????????????????????????????????????ǹ??????????п????????????????????????????????????????????????? ???????? ?????????????????????????????????????????????????????????????????????? ??????????????? ![]() ????????R, ??J.-??H. ??Jules-Henri Poincare 1854-1912?? ???????????W???1854??4??29????????a??1912??7??17???????衣1873??10???????????????C?????WУ??1879??????W??ī@????Wλ?????????????W??W????v????1881???????W????????????? ?????????R???о??漰??????????W?????W?????W???S???I????????????????????W???档???????????????????????????????1878?????????M???????????R??????????????????????????????????????????????????????????????????K?l?F?@?N???????????????????????????Ч?á?1883???????????????????????????M???о???????????????о????????????L?????c?????_??????????^????????L????g???P?S?? ?????????R?????о???????????l??????????????}????1881~1886??l????????P??????????_????e????????????У?????????????????????????о???????????????N????????c?????c?????c???Y?c???????????????B??????????????O??h???P?S???????ж??????????1885?????????W????????O????n?w???}???????????????????R?о????w???W???}???d????????P?????w?е????|?????????С????r?????w???}??????????ī@??????C?????@?N?????????w???}????????????B?m?y????????@???????M?????????W???w?о??????M???u?M??_????????ó?????????w???W????g?????_?????????y?????1895???C??????????R??w???????????????w???W????????????Y???????????????????D?????w???Π????????????D?E???w???????S?E???w??h???w????????N?????R?????w????? ?????????R?????W??????????????????I??????????C?????????????}?????????1890?????@????????????λ??????°l???????о?????????????????????}???o??????????????纯?????????????C????1894????????e??????????M?}?????????????M?????????????l??? ?????????R???F?????W????????????????M?????W???????M??????????????????????????????????ε??????????μ??}???Ρ?????????????}???Ρ??}???ε??P?B??????????????????????V?W???????w?????????W??-?????R??????K?C?????ε???{????????????????????R????????????R???????????У??????????????w???}?????????????}?w?Y???M????N?l????????B?m??Q?????c???????}?? ?????????R??????????W????????????????<??????????????W>>??1901???_?????G???D?????????????о????????x?????????????????G???D??ε?????о?????????????W?????M???????Group Algebra???K?C??????????????????M??????????????????????䶮?C???????????????????????The third foundamental theorem of Lie Algebra?? ????????-?????????1899????????M?????????j??????Borel Algebra?????K????????????????C?????????R-???????-?S??????? ?????????R??????????W????????V?????о??????M?x??????????????I??????1899???_??о??????????????J?R?????????Q??????? ?????????R????W????<?W?c???O>>??1902????<?W??r?>>??1905????<?W?c????>>??1909???????????????? ?????????????????????????????????????????????????????????????????????? Millennium Problems Poincar?? Conjecture If we stretch a rubber band around the surface of an apple, then we can shrink it down to a point by moving it slowly, without tearing it and without allowing it to leave the surface. On the other hand, if we imagine that the same rubber band has somehow been stretched in the appropriate direction around a doughnut, then there is no way of shrinking it to a point without breaking either the rubber band or the doughnut. We say the surface of the apple is "simply connected," but that the surface of the doughnut is not. Poincar??, almost a hundred years ago, knew that a two dimensional sphere is essentially characterized by this property of simple connectivity, and asked the corresponding question for the three dimensional sphere (the set of points in four dimensional space at unit distance from the origin). This question turned out to be extraordinarily difficult, and mathematicians have been struggling with it ever since. ![]() ?????????????????????????????????????????????????????????????????????? ??2006??????????????????? 2006??????????????????????????????????????????????????й????????1??--?п?????????????о????????о??; ???????????????4??(3λ45????, ?λ?С?). ??????????о??????2006??8??????????????????е???????????????????Session 16(Numerical Analysis and Scientific Computing)????45?????????档 ??????????о???????п?????????????о?????????????????????о??????????????????????????????????????Ρ?????о??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????PML????????????к???????????????????????????????????????????1999??????й????????????????? 2000??????????????????2001???????????? ??????п?????????????о???????CAM Digest ?????????????????????????????????????????????????????????????????????? ICM2006 Welcome to the ICM2006 website On behalf of the Organizing Committee, we are very pleased to invite you to attend the International Congress of Mathematicians to be held in Madrid (Spain) from 22 to 30 August, 2006. On this webpage you will find all the information you need to plan your participation at the ICM2006. Following the long standing tradition of these congresses, ICM2006 will be a major scientific event, bringing together mathematicians from all over the world, and demonstrating the vital role that mathematics play in our society. We very much hope you will be able to attend it. Please add this page to your bookmarks and ask your colleagues to do so too. We hope you will visit this site regularly to keep up to date with the developments of the organization of the ICM2006. We are looking forward to having you here. Welcome to our site and see you in Madrid! Manuel de Le??n President of the Organizing Committee Carlos Andradas Vicepresident General http://www.icm2006.org/paginas/?pagina=home_ing |
» 猜你喜欢
博士延得我,科研能力直往上蹿
已经有7人回复
退学或坚持读
已经有27人回复
面上基金申报没有其他的参与者成吗
已经有5人回复
有70后还继续奋斗在职场上的吗?
已经有5人回复
遇见不省心的家人很难过
已经有22人回复
多组分精馏求助
已经有6人回复
Franks
木虫 (正式写手)
Dr
- 应助: 1 (幼儿园)
- 金币: 2284.2
- 散金: 9
- 红花: 3
- 帖子: 751
- 在线: 399.3小时
- 虫号: 90477
- 注册: 2005-09-01
- 专业: 功能与智能高分子

2楼2006-06-11 17:14:15
westwolf
木虫 (著名写手)
- 应助: 3 (幼儿园)
- 贵宾: 2.5
- 金币: 3732.4
- 散金: 954
- 红花: 5
- 帖子: 1338
- 在线: 55.4小时
- 虫号: 120650
- 注册: 2005-12-03
- 性别: GG
- 专业: 无机非金属基复合材料
3楼2006-06-11 19:00:16
1
|
4楼2006-06-11 19:37:36
5楼2006-06-11 22:00:04
0.5
![]() ![]() ![]() |
6楼2006-06-15 09:13:11




















回复此楼
