24小时热门版块排行榜    

查看: 1046  |  回复: 5
当前主题已经存档。

cdut

铁虫 (正式写手)

[交流] 庞加莱猜想将是2006年国际数学家大会的焦点

??????2006??????????????????????????????????????????????п?????????????2006?????????????????????????

????????????????????Grisha Perelman?????????????????20????????????????????????????????Щ?????????????????????????????????????????У????????????????????

????????в???????????????????????????????г??????2000??Clay ?о?????????????7?????????????????????????????Grisha Perelman??????????????????????????????????????????????1994??????????????????г???????????8??????2003??5??????????????????????????????????????????3?????????????????????????????????????????????????????????????????2006???????????????????????????

??????????????λ????????????????Richard Hamilton?????John Morgan????????????????????档 ??Grisha Perelman???????????????????Richard Hamilton????????????????Grisha Perelman?????????????????????????棻??????????????????????????????????????????????ǹ??????????п?????????????????????????????????????????????????


????????
??????????????????????????????????????????????????????????????????????

???????????????


????????R, ??J.-??H. ??Jules-Henri Poincare 1854-1912??

???????????W???1854??4??29????????a??1912??7??17???????衣1873??10???????????????C?????WУ??1879??????W??ī@????Wλ?????????????W??W????v????1881???????W?????????????

?????????R???о??漰??????????W?????W?????W???S???I????????????????????W???档???????????????????????????????1878?????????M???????????R??????????????????????????????????????????????????????????????????K?l?F?@?N???????????????????????????Ч?á?1883???????????????????????????M???о???????????????о????????????L?????c?????_??????????^????????L????g???P?S??

?????????R?????о???????????l??????????????}????1881~1886??l????????P??????????_????e????????????У?????????????????????????о???????????????N????????c?????c?????c???Y?c???????????????B??????????????O??h???P?S???????ж??????????1885?????????W????????O????n?w???}???????????????????R?о????w???W???}???d????????P?????w?е????|?????????С????r?????w???}??????????ī@??????C?????@?N?????????w???}????????????B?m?y????????@???????M?????????W???w?о??????M???u?M??_????????ó?????????w???W????g?????_?????????y?????1895???C??????????R??w???????????????w???W????????????Y???????????????????D?????w???Π????????????D?E???w???????S?E???w??h???w????????N?????R?????w?????

?????????R?????W??????????????????I??????????C?????????????}?????????1890?????@????????????λ??????°l???????о?????????????????????}???o??????????????纯?????????????C????1894????????e??????????M?}?????????????M?????????????l???

?????????R???F?????W????????????????M?????W???????M??????????????????????????????????ε??????????μ??}???Ρ?????????????}???Ρ??}???ε??P?B??????????????????????V?W???????w?????????W??-?????R??????K?C?????ε???{????????????????????R????????????R???????????У??????????????w???}?????????????}?w?Y???M????N?l????????B?m??Q?????c???????}??

?????????R??????????W????????????????<>??1901???_?????G???D?????????????о????????x?????????????????G???D??ε?????о?????????????W?????M???????Group Algebra???K?C??????????????????M??????????????????????䶮?C???????????????????????The third foundamental theorem of Lie Algebra?? ????????-?????????1899????????M?????????j??????Borel Algebra?????K????????????????C?????????R-???????-?S???????

?????????R??????????W????????V?????о??????M?x??????????????I??????1899???_??о??????????????J?R?????????Q???????

?????????R????W????<>??1902????<>??1905????<>??1909????????????????

??????????????????????????????????????????????????????????????????????
Millennium Problems


Poincar?? Conjecture
If we stretch a rubber band around the surface of an apple, then we can shrink it down to a point by moving it slowly, without tearing it and without allowing it to leave the surface. On the other hand, if we imagine that the same rubber band has somehow been stretched in the appropriate direction around a doughnut, then there is no way of shrinking it to a point without breaking either the rubber band or the doughnut. We say the surface of the apple is "simply connected," but that the surface of the doughnut is not. Poincar??, almost a hundred years ago, knew that a two dimensional sphere is essentially characterized by this property of simple connectivity, and asked the corresponding question for the three dimensional sphere (the set of points in four dimensional space at unit distance from the origin). This question turned out to be extraordinarily difficult, and mathematicians have been struggling with it ever since.



??????????????????????????????????????????????????????????????????????

  ??2006???????????????????


    2006??????????????????????????????????????????????????й????????1??--?п?????????????о????????о??; ???????????????4??(3λ45????, ?λ?С?).

??????????о??????2006??8??????????????????е???????????????????Session 16(Numerical Analysis and Scientific Computing)????45?????????档

??????????о???????п?????????????о?????????????????????о??????????????????????????????????????Ρ?????о??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????PML????????????к???????????????????????????????????????????1999??????й????????????????? 2000??????????????????2001????????????

??????п?????????????о???????CAM Digest

??????????????????????????????????????????????????????????????????????
ICM2006

Welcome to the ICM2006 website

On behalf of the Organizing Committee, we are very pleased to invite you to attend the International Congress of Mathematicians to be held in Madrid (Spain) from 22 to 30 August, 2006. On this webpage you will find all the information you need to plan your participation at the ICM2006.

Following the long standing tradition of these congresses, ICM2006 will be a major scientific event, bringing together mathematicians from all over the world, and demonstrating the vital role that mathematics play in our society. We very much hope you will be able to attend it.

Please add this page to your bookmarks and ask your colleagues to do so too. We hope you will visit this site regularly to keep up to date with the developments of the organization of the ICM2006. We are looking forward to having you here.

Welcome to our site and see you in Madrid!

Manuel de Le??n
President of the Organizing Committee

Carlos Andradas
Vicepresident General

http://www.icm2006.org/paginas/?pagina=home_ing














回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Franks

木虫 (正式写手)

Dr

不是已经解决了吗?

不是已经被朱熹平教授等人解决了吗?
lovescience,enjoyscientificlife
2楼2006-06-11 17:14:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

westwolf

木虫 (著名写手)


1

不错,我科普了一下。谢谢!
文章中“巴黎綜合工科學校”的翻译可能有问题(你可能是转载的)。它的原文应该是École Polytechnique de Paris.是全求非常著名的大学之一(可能在法国排名第一)。一般大家的翻译是:巴黎理工大学。
3楼2006-06-11 19:00:16
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

1

4楼2006-06-11 19:37:36
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zhangjiewx

新虫 (初入文坛)

0.5

最好能够做个PPT看看
5楼2006-06-11 22:00:04
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

0.5

6楼2006-06-15 09:13:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 cdut 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见