24小时热门版块排行榜    

查看: 1197  |  回复: 9
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

zhseda

金虫 (小有名气)

[交流] 2010年09月02日 ICICTA2010被EI 检索!!! 已有7人参与

2010年09月02日 ICICTA2010被EI 检索!!!
2010年09月02日 ICICTA2010被EI 检索!!!
2010年09月02日 ICICTA2010被EI 检索!!!
2010年09月02日 ICICTA2010被EI 检索!!!
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

陀附a68

禁虫 (初入文坛)


小木虫: 金币+0.5, 给个红包,谢谢回帖
本帖内容被屏蔽

9楼2017-05-31 19:39:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 10 个回答

我心永恒1567

木虫 (正式写手)

引用回帖:
Originally posted by zhseda at 2010-09-02 08:21:33:
2010年09月02日 ICICTA2010被EI 检索!!!
2010年09月02日 ICICTA2010被EI 检索!!!
2010年09月02日 ICICTA2010被EI 检索!!!
2010年09月02日 ICICTA2010被EI 检索!!!

祝贺你们,希望我们会议的文章页尽快检索!
4楼2010-09-02 13:30:21
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hdlyh

铁虫 (小有名气)


小木虫(金币+0.5):给个红包,谢谢回帖交流
各位研友,能帮我查这届会议上这篇文章的EI检索信息吗:Feature Selection through Optimization of k-Nearest Neighbor Matching Gain,万分感谢!
6楼2010-09-02 16:12:39
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

我心永恒1567

木虫 (正式写手)


小木虫(金币+0.5):给个红包,谢谢回帖交流
Accession number:  20103413169767

Title:  Feature selection through optimization of k-nearest neighbor matching gain

Authors:  Luo, Yihui1 ; Xiong, Shuchu1  

Author affiliation:  1  Department of Information, Hunan University of Commerce, Changsha, China


Corresponding author:  Luo, Y. (yihuiluo@yahoo.com.cn)  

Source title:  2010 International Conference on Intelligent Computation Technology and Automation, ICICTA 2010

Abbreviated source title:  Int. Conf. Intelligent Comput. Technol. Autom., ICICTA

Volume:  2

Monograph title:  2010 International Conference on Intelligent Computation Technology and Automation, ICICTA 2010

Issue date:  2010

Publication year:  2010

Pages:  309-312

Article number:  5522419

Language:  English

ISBN-13:  9780769540771

Document type:  Conference article (CA)

Conference name:  2010 International Conference on Intelligent Computation Technology and Automation, ICICTA 2010

Conference date:  May 11, 2010 - May 12, 2010

Conference location:  Changsha, China

Conference code:  81471

Sponsor:  IEEE Intelligent Computation Society; Res. Assoc. Intelligent Comput. Technol. Autom.; Hunan University; Changsha University of Science and Technology; Hunan University of Science and Technology

Publisher:  IEEE Computer Society, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States

Abstract:  Many problems in information processing involve some form of dimensionality reduction. In this paper, we propose a new model for feature evaluation and selection in unsupervised learning scenarios. The model makes no special assumptions on the nature of the data set. For each of the data set, the original features induce a ranking list of items in its k nearest neighbors. The evaluation criterion favors reduced features that result in the most consistent to these ranked lists. And an efficiently local descent search based on the model is adopted to select the reduced features. Our experiments with several data sets demonstrate that the proposed algorithm is able to detect completely irrelevant features and to remove some additional features without significantly hurting the performance of the clustering algorithm. © 2010 IEEE.

Number of references:  11

Main heading:  Feature extraction

Controlled terms:  Clustering algorithms  -  Data processing  -  Unsupervised learning

Uncontrolled terms:  Data sets  -  Dimensionality reduction  -  Evaluation criteria  -  Feature evaluation and selection  -  Feature selection  -  Information processing  -  K-nearest neighbors  -  New model  -  Search-based

Classification code:  716 Telecommunication; Radar, Radio and Television  -  721 Computer Circuits and Logic Elements  -  723 Computer Software, Data Handling and Applications

DOI:  10.1109/ICICTA.2010.608

Database:  Compendex

   Compilation and indexing terms, © 2010 Elsevier Inc.
7楼2010-09-02 16:42:14
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见