24小时热门版块排行榜    

查看: 594  |  回复: 3
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

yca

铁杆木虫 (著名写手)

[交流] 请帮忙查查ei是否检索,检索号是多少? 已有3人参与

哪位能否帮忙查查文章是否检索,检索号是多少?
题目: Predication of Sediment Yield Using Wavelet-Neural Networks
作者:Chuan-an Yao, Yong-chang Yu
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

yca

铁杆木虫 (著名写手)

谢谢!
ICMTMA 2010  3个月就检索了
3楼2010-06-17 10:07:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 4 个回答

xthan

木虫 (正式写手)


yca(金币+5): 2010-06-17 09:55:00
xiaogounihao(金币+1):谢谢 2010-06-17 15:23:44
Accession number:  20102312991925

Title:  Predication of sediment yield using wavelet - Neural networks

Authors:  Yao, Chuan-An1 ; Yu, Yong-Chang1  

Author affiliation:  1  College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China


Corresponding author:  Yao, C.-A. (ycagl@163.com)  

Source title:  2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010

Abbreviated source title:  Int. Conf. Meas. Technol. Mechatronics Autom., ICMTMA

Volume:  2

Monograph title:  2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010

Issue date:  2010

Publication year:  2010

Pages:  911-914

Article number:  5459971

Language:  English

ISBN-13:  9780769539621

Document type:  Conference article (CA)

Conference name:  International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010

Conference date:  March 13, 2010 - March 14, 2010

Conference location:  Changsha, China

Conference code:  80501

Sponsor:  Changsha University of Science and Technology; Hunan University of Science and Technology; IEEE Instrumentation and Measurement Society; City University of Hong Kong

Publisher:  IEEE Computer Society, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States

Abstract:  Accurate prediction of watershed sediment yield is important for ecological environment and water resources engineering. Based on the advantages of wavelet analysis and neural networks, a new hybrid model of wavelet transform and BP neural network (wavelet-neural network model, WANN) for predicting the sediment yield, has been suggested in this paper. The established WANN model is applied to make quantitative prediction of annual sediment yield for Hepinggou's small watershed, located in the southwest of China's Henan Province. First, the annual sediment yield time series is decomposed and reconstructed into the low-frequency component and the high-frequency components at one-scale level by db2 wavelet, and then both are forecasted respectively with BP neural networks. Finally, the sum of two parts is the predicting result of the annual sediment yield. Results show that the suggested model can improve the forecasting accuracy; it can also be successfully applied to prediction of hydrological time series. © 2010 IEEE.

Number of references:  7

Main heading:  Neural networks

Controlled terms:  Forecasting  -  Landforms  -  Mechatronics  -  Sedimentology  -  Speech recognition  -  Time series  -  Water resources  -  Watersheds  -  Wavelet analysis  -  Wavelet transforms

Uncontrolled terms:  Accurate prediction  -  BP neural networks  -  Ecological environments  -  Forecasting accuracy  -  Henan Province  -  High frequency components  -  Hybrid model  -  Hydrological time-series  -  Low-frequency components  -  Neural network model   -  Prediction  -  Quantitative prediction  -  Sediment yields  -  Small watersheds

Classification code:  723.5 Computer Applications  -  731.7 Mechatronix  -  751.5 Speech  -  922.2 Mathematical Statistics  -  912.2 Management  -  921 Mathematics  -  921.3 Mathematical Transformations  -  913.4 Manufacturing  -  723.4 Artificial Intelligence  -  723.2 Data Processing and Image Processing  -  444 Water Resources  -  444.1 Surface Water  -  461.1 Biomedical Engineering  -  481.1 Geology  -  608 Mechanical Engineering, General  -  703.2.1 Electric Filter Analysis

DOI:  10.1109/ICMTMA.2010.794

Database:  Compendex

   Compilation and indexing terms, © 2009 Elsevier Inc.
2楼2010-06-17 09:52:08
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

焊卮b35

禁虫 (初入文坛)


小木虫: 金币+0.5, 给个红包,谢谢回帖
本帖内容被屏蔽

4楼2017-05-24 10:10:22
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见