| 查看: 1177 | 回复: 3 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
09021122木虫 (正式写手)
|
[交流]
请高手帮忙翻译一篇短文,急!!!!
|
||
|
翻译: The concept of population genomics was introduced to describe the process of sampling numerous loci within a genome to identify locus-specific effects from genome-wide effects. Likewise, “genomic phylogeography” describes the simultaneous sampling numerous loci across the genome to infer population history and estimate demographic parameters. Genomic phylogeography is distinguished from multilocus phylogeography by scale and degree. Multilocus studies usually focus on a few tens of markers; although a considerable improvement over single-locus analyses, such studies still only sparsely sample the full heterogeneity of the drift process, and inferences may be driven by a few outlier loci. In genomic phylogeography, by contrast, enough loci are screened to accurately estimate sampling distributions across loci, and locus-specific effects will be represented on the extreme values while genome-wide effects will fall into the centers of the distribution. Such locus-specific effects may be due to selection, mutation, or recombination, whereas genome-wide effects are due to demographic processes such as gene flow, inbreeding, population growth, or bottle necks, and that informs population history. Two main steps are involved in this process: (1) estimating genome-wide effects and (2) detecting outlier loci. Luikart et al.(2003) and Storz(2005) review ways for identifying outlier loci that uses simulated or empirical null distribution of summary statistics such as Fst or homozygosity. These genomic approaches have been successfully applied to model species such as humans, drosophila, and maize. The empircal distribution requires that enough loci be sampled to build robust null distributions and avoid erroneous identifications of perfectly good neutral loci. Examples or methods that use theoretical distributions are Ewens-Watterson test for neutrality, and the Fst outlier test developed by Beaumont and Nichols. |
» 猜你喜欢
导师想让我从独立一作变成了共一第一
已经有9人回复
博士读完未来一定会好吗
已经有23人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有11人回复
读博
已经有4人回复
JMPT 期刊投稿流程
已经有4人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
申请2026年博士
已经有6人回复

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
发芽土豆(金币+2):赠人玫瑰,手有余香。谢谢您! 2010-06-17 15:25:09
qingshaojun0823(金币+10, 翻译EPI+1):代楼主奖励!谢谢应助! 2010-06-22 09:31:23
发芽土豆(金币+2):赠人玫瑰,手有余香。谢谢您! 2010-06-17 15:25:09
qingshaojun0823(金币+10, 翻译EPI+1):代楼主奖励!谢谢应助! 2010-06-22 09:31:23
|
那么长一段话居然都不给BB,实在有点过分了!不过我猜你应该是忘记了,既然你急要,我就先帮你翻了~可是不是你们专业的,有很多专业单词拿不准,如果翻错了,请见谅哈! 人口基因组学这一概念的引入描述了一种通过在单一基因组内采样大量位点,以此从全基因组产生的影响中鉴别出特定基因座影响的方法。 同样,“基因组亲缘地理学”描述了同时采样基因组内的大量位点,可用于推断人口历史和估计人口统计参数。基因组亲缘地理学可从其规模和深度上区别于多位点亲缘地理学。多位点的研究通常只关注几十个基因标记;尽管其相较于单位点分析有着一定程度上的改进,但这种研究还是只采样了漂移过程所带来的所有异质性中极少的一部分,并且其结果也有可能被少量异样位点所影响。相对而言,基因组亲缘地理学中扫描了足够多的位点,从而可准确估计出位点的采样分布,并且特定基因座的影响将被表示为一些极端数值,而全基因组的影响将落入分布的中心。这些特定基因座的影响可能源于基因选择、突变、或重组,而全基因组的影响则是由于人口的流动过程,如基因流动,近亲繁殖,人口增长,或瓶颈,而且这些也显示了人口的历史。这一方法包含两个步骤:(1)预测全基因组的影响,和(2)测定异常位点。Luikart等人(2005)和Storz(2005)回顾了一些用于鉴别异常位点的方法,这些方法利用了综合统计的模拟或经验零分布,如Fst或纯合性等。这些基因组方法已成功应用到模式物种中,如人类、果蝇和玉米。其经验分布要求采样足够多的位点,以建立坚实可信的零分布,并避免优良中性位点的错误鉴定。使用理论分布的例子或方法有用于中性测试的Ewens-Watterson测试,和Beaumont and Nichols发明的Fst异常位点测试。 |

2楼2010-06-17 15:14:22
09021122
木虫 (正式写手)
- 应助: 0 (幼儿园)
- 金币: 2064.5
- 红花: 1
- 沙发: 1
- 帖子: 518
- 在线: 113.5小时
- 虫号: 856621
- 注册: 2009-09-25
- 性别: GG
- 专业: 系统生物学

3楼2010-06-17 17:49:25

4楼2010-06-17 23:06:54













回复此楼
