24小时热门版块排行榜    

查看: 764  |  回复: 7
当前主题已经存档。

lixj1982

金虫 (小有名气)

[交流] 重金请虫友帮忙查询sci检索号 已有4人参与

请大家帮忙查询一下以下三篇文章sci检索号,急用,最好有详单。不胜感激。
1.         Multi-focus image fusion using PCNN. Pattern Recognition, 2010, 43:2003-2016.
2.         Review of pulse-coupled neural networks. Image and Vision Computing, 2010, 28(1): 5-13.
4.        Tri-state cascading pulse coupled neural network and its application in finding shortest path。 Neuron Network World,2009,19(6): 711-723.

[ Last edited by lixj1982 on 2010-4-14 at 20:34 ]
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

glassman782

铁杆木虫 (知名作家)

lixj1982(金币+2): 2010-04-14 22:09
Multi-focus image fusion using PCNN
  
        更多选项

   
作者: Wang ZB (Wang, Zhaobin)1,2, Ma YD (Ma, Yide)1, Gu J (Gu, Jason)2  
来源出版物: PATTERN RECOGNITION    卷: 43    期: 6    页: 2003-2016    出版年: JUN 2010   
被引频次: 0     参考文献: 26     引证关系图      
摘要: This paper proposes a new method for multi-focus image fusion based on dual-channel pulse coupled neural networks (dual-channel PCNN). Compared with previous methods, our method does not decompose the input source images and need not employ more PCNNs or other algorithms such as DWT. This method employs the dual-channel PCNN to implement multi-focus image fusion. Two parallel source images are directly input into PCNN. Meanwhile focus measure is carried out for source images. According to results of focus measure, weighted coefficients are automatically adjusted. The rule of auto-adjusting depends on the specific transformation. Input images are combined in the dual-channel PCNN. Four group experiments are designed to testify the performance of the proposed method. Several existing methods are compared with our method. Experimental results show our presented method outperforms existing methods, in both visual effect and objective evaluation criteria. Finally, some practical applications are given further. (C) 2010 Elsevier Ltd. All rights reserved.
文献类型: Article  
语言: English  
作者关键词: PCNN; Image fusion; Focus measure  
KeyWords Plus: COUPLED NEURAL-NETWORK  
通讯作者地址: Ma, YD (通讯作者), Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China  
地址:
1. Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
2. Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4 Canada  
电子邮件地址: zhaobin_wang@hotmail.com, ydma@lzu.edu.cn  
基金资助致谢:
基金资助机构 授权号
National Natural Science Foundation of China  60872109  
Program for New Century Excellent Talents in University  NCET-06-0900  
China Scholarship   
Fundamental Research Funds for the Central Universities of Lanzhou University in China  Izujbky-2009-129  

[显示基金资助信息]   

We thank the associate editor and the reviewers for their helpful and constructive suggestions. The authors also thank Ying Zhu for her support and help. This paper is jointly supported by National Natural Science Foundation of China (No.60872109), Program for New Century Excellent Talents in University (NCET-06-0900), China Scholarship, and the Fundamental Research Funds for the Central Universities of Lanzhou University in China ( Izujbky-2009-129).

出版商: ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND  
学科类别: Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic  
IDS 号: 574KJ  
ISSN: 0031-3203  
DOI: 10.1016/j.patcog.2010.01.011
2楼2010-04-14 20:50:49
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

antiq

木虫 (知名作家)

lixj1982(金币+1): 2010-04-14 22:15
2.
FN        ISI Export Format
VR        1.0
PT         J
AN         11176020
DT         Journal Paper
TI         Review of pulse-coupled neural networks
AU         Zhaobin Wang
Yide Ma
Feiyan Cheng
Lizhen Yang
SO         Image and Vision Computing
PY         2010
PD         January 2010
VL         28
IS         1
JI         Image Vis. Comput. (Netherlands)
BP         5
EP         13
PS         5-13
DI         10.1016/j.imavis.2009.06.007
LA         English
AB         This paper reviews the research status of pulse-coupled neural networks
(PCNN) in the past decade. Considering there are too many publications
about the PCNN, we summarize main approaches and point out interesting
parts of the PCNN researches rather than contemplate to go into details
of particular algorithms or describe results of comparative
experiments. First, the current status of the PCNN and some modified
models are briefly introduced. Second, we review the PCNN applications
in the field of image processing (e.g. image segmentation, image
enhancement, image fusion, object and edge detection, pattern
recognition, etc.), then applications in other fields also are
mentioned. Subsequently, some existing problems are summarized, while
we give some suggestions for the solutions to some puzzles. Finally,
the trend of the PCNN is pointed out. [All rights reserved Elsevier].
DE         Bibliography, Practical/ image processing; neural nets/ pulse-coupled neural networks; image processing/ B6135 Optical, image and video signal processing
C5260B Computer vision and image processing techniques
C5290 Neural computing techniques
C1         Zhaobin Wang; Yide Ma; Feiyan Cheng; Lizhen Yang; Sch. of Inf. Sci. &
Eng., Lanzhou Univ., Lanzhou, China
PU         Elsevier Science B.V.
PV         Netherlands
NR         133
CO         IVCODK
SN         0262-8856
ID         [S0262-8856(09)00134-6],[10.1016/j.imavis.2009.06.007]
UT         INSPEC:11176020
ER
3楼2010-04-14 20:51:28
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

glassman782

铁杆木虫 (知名作家)

lixj1982(金币+2): 2010-04-14 22:09
Review of pulse-coupled neural networks
  
        更多选项

   
作者: Wang ZB (Wang, Zhaobin)1, Ma YD (Ma, Yide)1, Cheng FY (Cheng, Feiyan)1, Yang LZ (Yang, Lizhen)1  
来源出版物: IMAGE AND VISION COMPUTING    卷: 28    期: 1    页: 5-13    出版年: JAN 2010   
被引频次: 0     参考文献: 133     引证关系图      
摘要: This paper reviews the research status of pulse-coupled neural networks (PCNN) in the past decade. Considering there are too many publications about the PCNN, we summarize main approaches and point out interesting parts of the PCNN researches rather than contemplate to go into details of particular algorithms or describe results of comparative experiments. First, the current status of the PCNN and some modified models are briefly introduced. Second, we review the PCNN applications in the field of image processing (e.g. image segmentation, image enhancement, image fusion, object and edge detection, pattern recognition, etc.), then applications in other fields also are mentioned. Subsequently, some existing problems are summarized, while we give some suggestions for the solutions to some puzzles. Finally, the trend of the PCNN is pointed out. (C) 2009 Elsevier B.V. All rights reserved.
文献类型: Review  
语言: English  
作者关键词: Pulse-coupled neural networks (PCNN); Image processing; Artificial neural network  
KeyWords Plus: INTERSECTING CORTICAL MODEL; IMAGE FUSION; PATTERN-RECOGNITION; SEGMENTATION; PCNN; CLASSIFICATION; ROTATION; REMOVAL; NOISE; SCALE  
通讯作者地址: Ma, YD (通讯作者), Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu Peoples R China  
地址:
1. Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu Peoples R China  
电子邮件地址: zhaobin_wang@hotmail.com, ydma@lzu.edu.cn  
基金资助致谢:
基金资助机构 授权号
National Natural Science Foundation of China  60572011
60872109  
Program for New Century Excellent Talents in University  NCET-06-0900  
China Scholarship   

[显示基金资助信息]   

We thank the associate editor, reviewers, and people, who help us to improve the paper, for their helpful and constructive suggestions. The authors also thank Ying Zhu for her support and help. This paper is jointly supported by National Natural Science Foundation of China (Nos. 60572011 and 60872109), Program for New Century Excellent Talents in University (NCET-06-0900), and China Scholarship.

出版商: ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS  
学科类别: Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Optics  
IDS 号: 534KK  
ISSN: 0262-8856  
DOI: 10.1016/j.imavis.2009.06.007
4楼2010-04-14 20:51:56
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

yangxs2002

木虫 (正式写手)

lixj1982(金币+1): 2010-04-14 22:22
这就相当于检索证明吗?
5楼2010-04-14 20:52:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

glassman782

铁杆木虫 (知名作家)

lixj1982(金币+2): 2010-04-14 22:09
TRI-STATE CASCADING PULSE COUPLED NEURAL NETWORK AND ITS APPLICATION IN FINDING SHORTEST PATH
  
       更多选项

   
作者: Zhao RC (Zhao Rongchang)1, Ma YD (Ma Yide)1, Zhan K (Zhan Kun)1  
来源出版物: NEURAL NETWORK WORLD    卷: 19    期: 6    页: 711-723    出版年: 2009   
被引频次: 0     参考文献: 14     引证关系图      
摘要: To increase the computing speed of neural networks by means of parallel performance, a new mode of neural network, named Tri-state Cascading Pulse Coupled Neural Network (TCPCNN), is presented in this paper, which takes the ideas of three-state and pipelining used in circuit designing into neural network, and creates new neuron with three states: sub-firing, firing and inhibition. The proposed model can transmit signals in parallel way, as it is inspired not only in the direction of auto-wave propagation but also in its transverse direction in neural network. In this paper, TCPCNN is applied to find the shortest path, and the experimental results indicate that the algorithm has lower computational complexity, higher accuracy, and secured full-scale searching. Furthermore, it has little dependence on initial conditions and parameters. The algorithm is tested by some experiments, and its results are compared with some other classical algorithms - Dijkstra algorithm, Bellman-Ford algorithm and a new algorithm using pulse coupled neural networks.
文献类型: Article  
语言: English  
作者关键词: Optimization problem; neural network; pcnn; shortest path; auto-wave; parallel process; tri-state cascading pulse coupled neural network  
通讯作者地址: Zhao, RC (通讯作者), Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu Peoples R China  
地址:
1. Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu Peoples R China  
电子邮件地址: Byrons.zhao@gmail.com, ydma@lzu.edu.cn  
基金资助致谢:
基金资助机构 授权号
National Science Foundation of China  60572011
60872109  
Program for New Century Excellent Talents in University  NCET-06-0900  

[显示基金资助信息]   

The authors thank the associate editor and the anonymous reviewers for their careful work and valuable suggestions. We are also very grateful to Jason Gu, Ph.D in Dalhousie University, who kindly helped us to correct mistakes in the paper. Moreover, the work is supported by the National Science Foundation of China under the Grant No. 60572011 and No. 60872109, and Program for New Century Excellent Talents in University under No. NCET-06-0900.

出版商: ACAD SCIENCES CZECH REPUBLIC, INST COMPUTER SCIENCE, POD VODARENSKOU VEZI 2, 182 07 PRAGUE 8, 00000, CZECH REPUBLIC  
学科类别: Computer Science, Artificial Intelligence; Neurosciences  
IDS 号: 545KB  
ISSN: 1210-0552
6楼2010-04-14 20:53:01
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

antiq

木虫 (知名作家)

lixj1982(金币+1): 2010-04-14 22:22
4,先定下
放弃。
7楼2010-04-14 20:56:35
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

xmuchong6561

木虫 (著名写手)

学习了。。。
金币是用来散滴
8楼2010-04-15 06:24:54
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 lixj1982 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见