| 查看: 985 | 回复: 5 | ||||
| 当前主题已经存档。 | ||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||
coolrainbow木虫 (著名写手)
未来国家冻凉
|
[交流]
【调查】应该纪念一下J. A. Pople了
|
|||
|
John Pople died on March 15, 2004 这是Pople的一个传记吧。想当年,正是Pople把量子化学从“black days”挽救了出来,从而造就了化学中这么一门极其有特色的学科,Pople的经历不能为每个人所复制,但是也能给大家提供点经验吧 My early life was spent in Burnham-on-Sea, Somerset, a small seaside resort town (population around 5000) on the west coast of England. I was born on October 31, 1925 and lived there with my parents until shortly after the end of the Second World War in 1946. No member of my family was involved in any scientific or technical activity. Indeed, I was the first to attend a university. My father, Keith Pople, owned the principal men's clothing store in Burnham. In addition to selling clothes in the shop, he used to drive around the surrounding countryside with a car full of clothes for people in remote farms and villages. He was resourceful and made a fair income, considering the economic difficulties during the depression of the 1930s. My great-grandfather had come to Burnham around 1850 and set up a number of local businesses. He had a large family and these were split up among his children. As a result, I had relatives in many of the other businesses in the town. My grandfather inherited the clothing shop and this passed to my father when he returned from the army at end of the First World War. My mother, Mary Jones, came from a farming background. Her father had moved from Shropshire as a young man and had farmed near Bath for most of his life. I suspect that he would have preferred to be a teacher, for he had a large collection of books and encyclopedias. He wanted my mother to be a schoolteacher, but this did not happen. Instead, she became a tutor to children in a rich family and, later, a librarian in the army during the first war. Most of her relatives were farmers in various parts of Somerset and Wiltshire so, as small children, my younger brother and I spent much time staying on farms. Both of my parents were ambitious for their children; from an early age I was told that I was expected to do more than continue to run a small business in this small town. Education was important and seen as a way of moving forward. However, difficulties arose in the choice of school. There was a good preparatory school in Burnham but, as part of the complex English class system, it was not open to children of retail tradesmen, even if they could afford the fees. The available alternative was unsatisfactory and my parents must have agonized over what to do. Eventually, they decided to send us to Bristol Grammar School (BGS) in the nearest big city thirty miles away. BGS was the prime day school for boys, catering mainly to middle class families resident in the city, although it received a government grant for accepting about thirty boys a year from the state elementary schools. I went there in the spring of 1936 at the age of ten. Some arrangement had to be made for boarding and I used to return home by train each weekend. This I found unappealing and eventually I persuaded my parents to allow me to commute daily - two miles by bicycle, twenty-five miles by train and one mile on foot. I continued to do this during the early part of the war, a challenging experience during the many air attacks on Bristol. Often, we had to wend our way past burning buildings and around unexploded bombs on the way to school in the morning. Many classes had to be held in damp concrete shelters under the playing fields. In spite of all these difficulties, the school staff coped well and I received a superb education. At the age of twelve, I developed an intense interest in mathematics. On exposure to algebra, I was fascinated by simultaneous equations and rapidly read ahead of the class to the end of the book. I found a discarded textbook on calculus in a wastebasket and read it from cover to cover. Within a year, I was familiar with most of the normal school mathematical curriculum. I even started some research projects, formulating the theory of permutations in response to a challenge about the number of possible batting orders of the eleven players in a cricket team. For a very short time, I thought this to be original work but was mortified to find n! described in a textbook. I then attempted to extend n! to fractional numbers by various interpolation schemes. Despite a lot of effort, this project was ultimately unsuccessful; I was angry with myself when I learned of Euler's solution some years later. However, these early experiences were valuable in formulating an attitude of persistence in research. All this mathematical activity was kept secret. My parents did not comprehend what I was doing and, in class, I often introduced deliberate errors in my exercises to avoid giving an impression of being too clever. My grades outside of mathematics and science were undistinguished so I usually ended up several places down in the monthly class order. This all changed suddenly three years later when the new senior mathematics teacher, R.C. Lyness, decided to challenge the class with an unusually difficult test. I succumbed to temptation and turned in a perfect paper, with multiple solutions to many of the problems. Shortly afterwards, my parents and I were summoned to a special conference with the headmaster at which it was decided that I should be prepared for a scholarship in mathematics at Cambridge University. During the remaining two years at BGS, I received intense personal coaching from Lyness and the senior physics master, T.A. Morris. Both were outstanding teachers. The school, like many others in Britain, attached great importance to the placement of students at Oxford or Cambridge. Most such awards were in the classics and I think that the mathematics and science staff were very anxious to compete. Ironically, during the last two years at BGS, I abandoned chemistry to concentrate on mathematics and physics. In 1942, I travelled to Cambridge to take the scholarship examination at Trinity College, received an award and entered the university in October 1943. In the middle of the war, most young men of my age were inducted into the armed forces at the age of seventeen. However, a small group of students in mathematics, science and medicine was permitted to attend university before taking part in wartime research projects such as radar, nuclear explosives, code-breaking and the like. This was a highly successful project and many of my predecessors in earlier years made important contributions to the war effort. The plan was to complete all degree courses in only two years, followed by secondment to a government research establishment. In my case, I completed Part II of the mathematical tripos in May 1945, just as the European war was ending. In fact, it was hard to concentrate on the examinations because of the noisy celebrations going on in the streets outside. The government no longer had need for my services and the university was under great pressure to make room for the deluge of exservicemen as they were demobilized from the armed forces. So, I had to leave Cambridge and take up industrial employment for a period. This was with the Bristol Aeroplane Company, close to where I had attended school. There was little to do there and I had a period of enforced idleness as changing employment was illegal at the time (part of the obsession for a planned economy in postwar Britain). In 1945, I had little idea of what my future career might be. My interest in pure mathematics began to wane; after toying with several ideas, I finally resolved to use my mathematical skills in some branch of science. The choice of a particular field was postponed, so I devoted much of my time to pestering government offices for permission to return to Cambridge and resume my studies. In the late summer of 1947, I finally received a letter informing me that an unexpectedly large number of students had failed their examinations and a few places were available. So, in October 1947, I returned to Cambridge to begin a career in mathematical science. Cambridge in 1947 had greatly changed since 1943. The university was crowded with students in their late twenties who had spent many years away at the war. In addition, the lectures were given by the younger generation who had also been away on research projects. There was a general air of excitement as these people turned their attention to new scientific challenges. I remained as a mathematics student but spent the academic year 1947-8 taking courses in as many branches of theoretical science as I could manage. These included quantum mechanics (taught in part by Dirac), fluid dynamics, cosmology and statistical mechanics. Most of the class opted for research in fundamental areas of physics such as quantum electrodynamics which was an active field at the time. I felt that challenging the likes of Einstein and Dirac was overambitious and decided to seek a less crowded (and possibly easier) branch of science. I developed an interest in the theory of liquids, particularly as the statistical mechanics of this phase had received relatively little attention, compared with solids and gases. I approached Fred Hoyle, who was giving the statistical mechanics lectures (following the death of R.H. Fowler). However, his current interests were in the fields of astrophysics and cosmology, which I found rather remote from everyday experience. I next approached Sir John Lennard-Jones (LJ), who had published important papers on a theory of liquids in 1937. He held the chair of theoretical chemistry at Cambridge and was lecturing on molecular orbital theory at the time. When I approached him, he told me that his interests were currently in electronic structure but he would very possibly return to liquid theory at some time. On this basis, we agreed that I would become a research student with him for the following year. Thus, after the examinations in June 1948, I began my career in theoretical chemistry at the beginning of July. I had almost no chemical background, having last taken a chemistry course at BGS at the age of fifteen. Other important events took place in my life at this time. In late 1947, I was attempting to learn to play the piano and rented an instrument for the attic in which I lived in the most remote part of Trinity College. The neighbouring room was occupied by the philosopher Ludwig Wittgenstein, who had retired to live in primitive and undisturbed conditions in the same attic area. There is some evidence that my musical efforts distracted him so much that he left Cambridge shortly thereafter. In the following year, I sought out a professional teacher. The young lady I contacted, Joy Bowers, subsequently became my wife. We were married in Great St. Mary's Church, Cambridge in 1952, after a long courtship. Like many other Laureates, I have benefit immeasurably from the love and support of my wife and children. Life with a scientist who is often changing jobs and is frequently away at meetings and on lecture tours is not easy. Without a secure home base, I could not have made much progress. The next ten years (1948-1958) were spent in Cambridge. I was a research student until 1951, then a research fellow at Trinity College and finally a lecturer on the Mathematics Faculty from 1954 to 1958. Cambridge was an extraordinarily active place during that decade. I was a close observer of the remarkable developments in molecular biology, leading up to the double helix papers of Watson and Crick. At the same time, the X-ray group of Perutz and Kendrew (introduced to the Cavendish Laboratory by Lawrence Bragg) were achieving the first definitive structures of proteins. Elsewhere, Hoyle, Bondi and Gold were arguing their case for a cosmology of continuous creation, ultimately disproved but vigorously presented. Looking through the list of earlier Nobel laureates, I note a large number with whom I became acquainted and with whom I interacted during those years as they passed through Cambridge. In the theoretical chemistry department, LJ was professor and Frank Boys started as lecturer in September 1948. I began research with some studies of the water molecule, examining the nature of the lone pairs of electrons. This was an initial step towards a theory of hydrogen bonding between water molecules and a preliminary, rather empirical study of the structure of liquid water. This fulfilled my initial objective of dealing with properties of liquids and gained me a Ph.D. and a research fellowship at Trinity College. This highly competitive stage accomplished, I was able to relax a bit and formulate a more general philosophy for future research in chemistry. The general plan of developing mathematical models for simulating a whole chemistry was formulated, at least in principle, some time late in 1952. It is the progress towards those early objectives that is the subject of my Nobel lecture. [ Last edited by coolrainbow on 2010-3-16 at 22:13 ] |
» 收录本帖的淘帖专辑推荐
Gaussian |
» 猜你喜欢
2025年沈阳工业大学、沈阳化工大学硕士研究生接收调剂
已经有0人回复
ELISA试验中不容忽视的细节盘点(二)
已经有0人回复
物理化学论文润色/翻译怎么收费?
已经有108人回复
汕头大学化学招调剂,相关内容如下。
已经有4人回复
大湾区大学(筹)刘天辉课题组招收博士生(与中山大学物理学院联合培养)
已经有16人回复
PbS量子点如何确定浓度
已经有11人回复
细胞培养,这22个细节一定要注意!(一)
已经有0人回复
CSC访学博后项目获批,外方学校暂停合作该怎么办?
已经有51人回复
大湾区大学刘天辉课题组招收2026级博士生(与中山大学物理学院联合培养)
已经有22人回复
PbS量子点紫外吸收
已经有0人回复
比利时鲁汶大学与国家留学基金委共同资助博士研究生CSC-KU Leuven PhD Scholarship
已经有0人回复

6楼2010-03-17 03:14:49













回复此楼