24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1196  |  回复: 6
【奖励】 本帖被评价5次,作者parklyn增加金币 3.9

parklyn

铁杆木虫 (职业作家)


[资源] 【书籍】《FRACTAL GEOMETRY-Mathematical Foundations...》Kenneth Falconer

潞脺戮颅碌盲碌脛脢茅录庐拢卢路脩潞脺麓贸碌脛鹿娄路貌脮脪脌麓碌脛拢卢路脰脧铆赂酶麓贸录脪隆拢脧拢脥没赂酶赂枚脝脌录脹拢隆
路脰脨脦录赂潞脦隆垄 路脟脧脽脨脭隆垄 脢媒脩搂隆垄 脫娄脫脙

隆露FRACTAL GEOMETRY-Mathematical Foundations and Applications(Second Edition) 隆路

Kenneth Falconer University of St Andrews,UK
2003 John Wiley&Sons,Ltd ISBNs:0-470-84861-8(HB);0-470-84862-6(PB)

PART I FOUNDATIONS 1
Chapter 1 Mathematical background...............................3
1.1 Basic set theory...................................3
1.2 Functions and limits.................................6
1.3 Measures and mass distributions........................11
1.4 Notes on probability theory............................17
1.5 Notes and references................................24
Exercises........................................25
Chapter 2 Hausdorff measure and dimension.........................27
2.1 Hausdorff measure.................................27
2.2 Hausdorff dimension................................31
2.3 Calculation of Hausdorff dimension隆陋simple examples...........34
*2.4 Equivalent definitions of Hausdorff dimension.................35
*2.5 Finer definitions of dimension...........................36
2.6 Notes and references................................37
Exercises........................................37
Chapter 3 Alternative definitions of dimension.......................39
3.1 Box-counting dimensions.............................41
3.2 Properties and problems of box-counting dimension............47
vvi Contents
*3.3 Modified box-counting dimensions.......................49
*3.4 Packing measures and dimensions.......................50
3.5 Some other definitions of dimension.......................53
3.6 Notes and references................................57
Exercises........................................57
Chapter 4 Techniques for calculating dimensions.....................59
4.1 Basic methods....................................59
4.2 Subsets of finite measure.............................68
4.3 Potential theoretic methods............................70
*4.4 Fourier transform methods.............................73
4.5 Notes and references................................74
Exercises........................................74
Chapter 5 Local structure of fractals...............................76
5.1 Densities........................................76
5.2 Structure of 1-sets..................................80
5.3 Tangents to s-sets..................................84
5.4 Notes and references................................89
Exercises........................................89
Chapter 6 Projections of fractals..................................90
6.1 Projections of arbitrary sets............................90
6.2 Projections of s-sets of integral dimension...................93
6.3 Projections of arbitrary sets of integral dimension..............95
6.4 Notes and references................................97
Exercises........................................97
Chapter 7 Products of fractals....................................99
7.1 Product formulae...................................99
7.2 Notes and references................................107
Exercises........................................107
Chapter 8 Intersections of fractals.................................109
8.1 Intersection formulae for fractals........................110
*8.2 Sets with large intersection............................113
8.3 Notes and references................................118
Exercises........................................119
PART II APPLICATIONS AND EXAMPLES 121
Chapter 9 Iterated function systems隆陋self-similar and self-affine sets....123
9.1 Iterated function systems.............................123
9.2 Dimensions of self-similar sets..........................128vii
9.3 Some variations...................................135
9.4 Self-affine sets....................................139
9.5 Applications to encoding images.........................145
9.6 Notes and references................................148
Exercises........................................149
Chapter 10 Examples from number theory............................151
10.1 Distribution of digits of numbers.........................151
10.2 Continued fractions.................................153
10.3 Diophantine approximation............................154
10.4 Notes and references................................158
Exercises........................................158
Chapter 11 Graphs of functions.....................................160
11.1 Dimensions of graphs................................160
*11.2 Autocorrelation of fractal functions.......................169
11.3 Notes and references................................173
Exercises........................................173
Chapter 12 Examples from pure mathematics.........................176
12.1 Duality and the Kakeya problem.........................176
12.2 Vitushkin隆炉s conjecture...............................179
12.3 Convex functions...................................181
12.4 Groups and rings of fractional dimension....................182
12.5 Notes and references................................184
Exercises........................................185
Chapter 13 Dynamical systems.....................................186
13.1 Repellers and iterated function systems....................187
13.2 The logistic map...................................189
13.3 Stretching and folding transformations.....................193
13.4 The solenoid......................................198
13.5 Continuous dynamical systems..........................201
*13.6 Small divisor theory.................................205
*13.7 Liapounov exponents and entropies.......................208
13.8 Notes and references................................211
Exercises........................................212
Chapter 14 Iteration of complex functions隆陋Julia sets..................215
14.1 General theory of Julia sets............................215
14.2 Quadratic functions隆陋the Mandelbrot set...................223
14.3 Julia sets of quadratic functions.........................227
14.4 Characterization of quasi-circles by dimension................235
14.5 Newton隆炉s method for solving polynomial equations.............237
14.6 Notes and references................................241
Exercises........................................242viii Contents
Chapter 15 Random fractals.......................................244
15.1 A random Cantor set.................................246
15.2 Fractal percolation..................................251
15.3 Notes and references................................255
Exercises........................................256
Chapter 16 Brownian motion and Brownian surfaces...................258
16.1 Brownian motion...................................258
16.2 Fractional Brownian motion............................267
16.3 Le隆盲vy stable processes...............................271
16.4 Fractional Brownian surfaces...........................273
16.5 Notes and references................................275
Exercises........................................276
Chapter 17 Multifractal measures..................................277
17.1 Coarse multifractal analysis............................278
17.2 Fine multifractal analysis..............................283
17.3 Self-similar multifractals..............................286
17.4 Notes and references................................296
Exercises........................................296
Chapter 18 Physical applications...................................298
18.1 Fractal growth....................................300
18.2 Singularities of electrostatic and gravitational potentials..........306
18.3 Fluid dynamics and turbulence..........................307
18.4 Fractal antennas...................................309
18.5 Fractals in finance..................................311
18.6 Notes and references................................315
Exercises........................................316
References...........................................317
Index................................................329
https://d.namipan.com/d/1cfdcaf542b16319a6b4ae7e2c16e299d50188fb48483700

[ Last edited by parklyn on 2010-3-6 at 09:14 ]
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

瞬飞

金虫 (正式写手)


★★★★★ 五星级,优秀推荐

很好,谢谢,非常感谢
2楼2010-05-18 15:02:12
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

梦萌倚

木虫 (著名写手)


★★★★★ 五星级,优秀推荐

支持支持。。谢谢分享。。多多光临。
3楼2010-07-18 22:33:52
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

yuzhongke507

金虫 (小有名气)


★★★ 三星级,支持鼓励

赞一个  呵呵
6楼2010-08-13 18:53:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hardares

捐助贵宾 (小有名气)


★ 一星级,一般

下载链接在哪里?
7楼2014-05-15 15:10:34
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
梅若鸣4楼
2010-07-19 01:42   回复  
 
梅若鸣5楼
2010-07-19 01:42   回复  
相关版块跳转 我要订阅楼主 parklyn 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见