| 查看: 1196 | 回复: 6 | ||
| 【奖励】 本帖被评价5次,作者parklyn增加金币 3.9 个 | ||
[资源]
【书籍】《FRACTAL GEOMETRY-Mathematical Foundations...》Kenneth Falconer
|
||
|
潞脺戮颅碌盲碌脛脢茅录庐拢卢路脩潞脺麓贸碌脛鹿娄路貌脮脪脌麓碌脛拢卢路脰脧铆赂酶麓贸录脪隆拢脧拢脥没赂酶赂枚脝脌录脹拢隆 路脰脨脦录赂潞脦隆垄 路脟脧脽脨脭隆垄 脢媒脩搂隆垄 脫娄脫脙 隆露FRACTAL GEOMETRY-Mathematical Foundations and Applications(Second Edition) 隆路 Kenneth Falconer University of St Andrews,UK 2003 John Wiley&Sons,Ltd ISBNs:0-470-84861-8(HB);0-470-84862-6(PB) PART I FOUNDATIONS 1 Chapter 1 Mathematical background...............................3 1.1 Basic set theory...................................3 1.2 Functions and limits.................................6 1.3 Measures and mass distributions........................11 1.4 Notes on probability theory............................17 1.5 Notes and references................................24 Exercises........................................25 Chapter 2 Hausdorff measure and dimension.........................27 2.1 Hausdorff measure.................................27 2.2 Hausdorff dimension................................31 2.3 Calculation of Hausdorff dimension隆陋simple examples...........34 *2.4 Equivalent definitions of Hausdorff dimension.................35 *2.5 Finer definitions of dimension...........................36 2.6 Notes and references................................37 Exercises........................................37 Chapter 3 Alternative definitions of dimension.......................39 3.1 Box-counting dimensions.............................41 3.2 Properties and problems of box-counting dimension............47 vvi Contents *3.3 Modified box-counting dimensions.......................49 *3.4 Packing measures and dimensions.......................50 3.5 Some other definitions of dimension.......................53 3.6 Notes and references................................57 Exercises........................................57 Chapter 4 Techniques for calculating dimensions.....................59 4.1 Basic methods....................................59 4.2 Subsets of finite measure.............................68 4.3 Potential theoretic methods............................70 *4.4 Fourier transform methods.............................73 4.5 Notes and references................................74 Exercises........................................74 Chapter 5 Local structure of fractals...............................76 5.1 Densities........................................76 5.2 Structure of 1-sets..................................80 5.3 Tangents to s-sets..................................84 5.4 Notes and references................................89 Exercises........................................89 Chapter 6 Projections of fractals..................................90 6.1 Projections of arbitrary sets............................90 6.2 Projections of s-sets of integral dimension...................93 6.3 Projections of arbitrary sets of integral dimension..............95 6.4 Notes and references................................97 Exercises........................................97 Chapter 7 Products of fractals....................................99 7.1 Product formulae...................................99 7.2 Notes and references................................107 Exercises........................................107 Chapter 8 Intersections of fractals.................................109 8.1 Intersection formulae for fractals........................110 *8.2 Sets with large intersection............................113 8.3 Notes and references................................118 Exercises........................................119 PART II APPLICATIONS AND EXAMPLES 121 Chapter 9 Iterated function systems隆陋self-similar and self-affine sets....123 9.1 Iterated function systems.............................123 9.2 Dimensions of self-similar sets..........................128vii 9.3 Some variations...................................135 9.4 Self-affine sets....................................139 9.5 Applications to encoding images.........................145 9.6 Notes and references................................148 Exercises........................................149 Chapter 10 Examples from number theory............................151 10.1 Distribution of digits of numbers.........................151 10.2 Continued fractions.................................153 10.3 Diophantine approximation............................154 10.4 Notes and references................................158 Exercises........................................158 Chapter 11 Graphs of functions.....................................160 11.1 Dimensions of graphs................................160 *11.2 Autocorrelation of fractal functions.......................169 11.3 Notes and references................................173 Exercises........................................173 Chapter 12 Examples from pure mathematics.........................176 12.1 Duality and the Kakeya problem.........................176 12.2 Vitushkin隆炉s conjecture...............................179 12.3 Convex functions...................................181 12.4 Groups and rings of fractional dimension....................182 12.5 Notes and references................................184 Exercises........................................185 Chapter 13 Dynamical systems.....................................186 13.1 Repellers and iterated function systems....................187 13.2 The logistic map...................................189 13.3 Stretching and folding transformations.....................193 13.4 The solenoid......................................198 13.5 Continuous dynamical systems..........................201 *13.6 Small divisor theory.................................205 *13.7 Liapounov exponents and entropies.......................208 13.8 Notes and references................................211 Exercises........................................212 Chapter 14 Iteration of complex functions隆陋Julia sets..................215 14.1 General theory of Julia sets............................215 14.2 Quadratic functions隆陋the Mandelbrot set...................223 14.3 Julia sets of quadratic functions.........................227 14.4 Characterization of quasi-circles by dimension................235 14.5 Newton隆炉s method for solving polynomial equations.............237 14.6 Notes and references................................241 Exercises........................................242viii Contents Chapter 15 Random fractals.......................................244 15.1 A random Cantor set.................................246 15.2 Fractal percolation..................................251 15.3 Notes and references................................255 Exercises........................................256 Chapter 16 Brownian motion and Brownian surfaces...................258 16.1 Brownian motion...................................258 16.2 Fractional Brownian motion............................267 16.3 Le隆盲vy stable processes...............................271 16.4 Fractional Brownian surfaces...........................273 16.5 Notes and references................................275 Exercises........................................276 Chapter 17 Multifractal measures..................................277 17.1 Coarse multifractal analysis............................278 17.2 Fine multifractal analysis..............................283 17.3 Self-similar multifractals..............................286 17.4 Notes and references................................296 Exercises........................................296 Chapter 18 Physical applications...................................298 18.1 Fractal growth....................................300 18.2 Singularities of electrostatic and gravitational potentials..........306 18.3 Fluid dynamics and turbulence..........................307 18.4 Fractal antennas...................................309 18.5 Fractals in finance..................................311 18.6 Notes and references................................315 Exercises........................................316 References...........................................317 Index................................................329 https://d.namipan.com/d/1cfdcaf542b16319a6b4ae7e2c16e299d50188fb48483700 [ Last edited by parklyn on 2010-3-6 at 09:14 ] |
» 猜你喜欢
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有7人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有8人回复
申请2026年博士
已经有6人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
2楼2010-05-18 15:02:12
3楼2010-07-18 22:33:52
6楼2010-08-13 18:53:40
7楼2014-05-15 15:10:34
简单回复
梅若鸣4楼
2010-07-19 01:42
回复



梅若鸣5楼
2010-07-19 01:42
回复













回复此楼