| 查看: 721 | 回复: 4 | |||
| 当前主题已经存档。 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
tianlangxingaa铁杆木虫 (著名写手)
|
[交流]
【分享】【分享】多尺度模拟 Multiscale modeling
|
||
|
In engineering, physics, meteorology and computer science, multiscale modeling is the field of solving physical problems which have important features at multiple scales, particularly multiple spatial and(or) temporal scales. Important problems include scale linking (Baeurle 2009, Baeurle 2006, Knizhnik 2002, Adamson 2007). Multiscale modeling in physics is aimed to calculation of material properties or system behaviour on one level using information or models from different levels. On each level particular approaches are used for description of a system. Following levels are usually distinguished: level of quantum mechanical models (information about electrons is included), level of molecular dynamics models (information about individual atoms is included), mesoscale or nano level (information about groups of atoms and molecules is included), level of continuum models, level of device models. Each level addresses a phenomenon over a specific window of length and time. Multiscale modeling is particularly important in integrated computational materials engineering since it allows to predict material properties or system behaviour based on knowledge of the atomistic structure and properties of elementary processes. In Operations Research, multiscale modeling addresses challenges for decision makers which come from multiscale phenomena across organizational, temporal and spatial scales. This theory fuses decision theory and multiscale mathematics and is referred to as Multiscale decision making. The Multiscale decision making approach draws upon the analogies between physical systems and complex man-made systems. In Meteorology, multiscale modeling is the modeling of interaction between weather systems of different spatial and temporal scales that produces the weather that we experience finally. The most challenging task is to model the way through which the weather systems interact as models cannot see beyond the limit of the model grid size. In other words, to run an atmospheric model that is having a grid size (very small ~ 500 m) which can see each possible cloud structure for the whole globe is computationally very expensive. On the other hand, a computationally feasible Global climate model (GCM, with grid size ~ 100km, cannot see the smaller cloud systems. So we need to come to a balance point so that the model becomes computationally feasible and at the same we do not loose much information, with the help of making some rational guesses, a process called Parameterization. see details: http://en.wikipedia.org/wiki/Multiscale_modeling |
» 猜你喜欢
遇见不省心的家人很难过
已经有11人回复
博士延得我,科研能力直往上蹿
已经有4人回复
退学或坚持读
已经有24人回复
免疫学博士有名额,速联系
已经有14人回复
面上基金申报没有其他的参与者成吗
已经有4人回复
多组分精馏求助
已经有6人回复
5楼2010-02-10 20:53:55
2楼2010-02-08 09:19:18
3楼2010-02-08 09:28:45
tianlangxingaa
铁杆木虫 (著名写手)
- 模拟EPI: 1
- 应助: 52 (初中生)
- 贵宾: 0.02
- 金币: 7464.2
- 红花: 19
- 帖子: 1283
- 在线: 735.1小时
- 虫号: 438857
- 注册: 2007-09-30
- 专业: 理论和计算化学
4楼2010-02-09 20:23:38













回复此楼