| 查看: 2245 | 回复: 24 | ||||
| 【奖励】 本帖被评价21次,作者zs85627增加金币 20.5 个 | ||||
| 当前主题已经存档。 | ||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||
[资源]
【资源】高分子实验物理巨著Methods of Experimental Physics_Polymers
|
||||
|
1980年的一本老书,希望对大家有所帮助。 Methods of Experimental Physics Vol. 16 Polymers Part A, B, C Part A: Molecular Structure and Dynamics 1. Introduction 1.1. Historic Development 1.2. Definitions 1.3. Formation and Conformation 1.4. The Solid State 1.4.1. Amorphous Polymers 1.4.2. Crystalline Polymers 1.5. Orientation 1.6. Impurities 2. Polymer Molecular Weights 2.1. Definitions of Molecular Weight 2.1.1. Introduction 2.1.2. The Moments of Molecular Weight 2.2. Intensive Properties of Polymers 2.2.1. Solution Viscosity 2.2.2. Colligative Properties 2.2.3. Light Scattering 2.3. Fractionation 2.3.1. Introduction 2.3.2. Polydispersity and Fractionation 2.3.3. Fractionation Techniques 2.4. Gel Permeation Chromatography 2.4.1. Introduction 2.4.2. Theory of Separation 2.4.3. Instrumentation and Operation 2.4.4. Molecular Weight Evaluations 2.4.5. Applications 2.4.6. Conclusions 2.5. Miscellaneous Methods 2.5.1. Sedimentation Analysis 2.5.2. End-Group Analysis 3 . Spectroscopic Methods 3.1. Infrared and Raman Spectra of Polymers 3.1.1. Introduction 3.1.2. Experimental 3.1.3. Vibrational Theory for Molecules 3.1.4. Vibrations of a Periodic Chain Molecule 3.1.6. Disordered Polymer Systems 3.1.5. Ordered Polymer Systems 3.2. Inelastic Electron Tunneling Spectroscopy 3.2.1. Introduction 3.2.2. Experimental Methods 3.2.3. Experimental Results 3.2.4. Theory 3.2.5. Applications 3.2.6. Summary 3.3. Rayleigh-Brillouin Scattering in Polymers 3.3.1. Introduction 3.3.2. Theory 3.3.3. Experimental 3.3.4. Applications 3.4. Inelastic Neutron Scattering Spectroscopy 3.4.1. Introduction 3.4.2. Basic Principles 3.4.3. Experimental Techniques 3.4.4. Selected Applications 3.4.5. Prospects and Perspectives 4 . High-Resolution Nuclear Magnetic Resonance Spectroscopy 4.1. Nuclear Magnetic Resonance Spectroscopy 4.1.1. Introduction 4.1.2. The NMR Experiment 4.1.3. NMR Parameters 4.1.4. Experimental Methods and Instrumentation 4.1.5. Measurement of NMR Parameters 4.2. HR-NMR as a Probe of Polymer Structure 4.2.1. Polymerization Mechanism 4.2.2. Polymer Chain Stereochemistry 4.2.3. Copolymer Sequence Distribution 4.2.4. Polymer Chain Conformation 4.3. HR-NMR as a Probe of Polymer Molecular Dynamics 4.3.1. Chain Segmental Motion 4.3.2. Sidechain Reorientational Motions 4.3.3. Distribution of Correlation Times 4.3.4. Other Nuclei 4.4. HR-NMR of the Solid State 4.4.1. The Resolution Problem: Sources of Line-Broadening and Methods for Their Removal 4.4.2. The Sensitivity Problem 4.4.3. Experimental Implementation of DD/CP/MAS 4.4.4. Applications of I3C NMR to the Solid State of Macromolecules 4.5. Summary 5 . Probe and Label Techniques 5.1. Positron Annihilation 5.1.1. Introduction 5.1.2. Positrons and Positronium 5.1.3. Theoretical Considerations 5.1.4. Experimental Techniques 5.1.5. Methods of Data Analysis 5.1.6. The Positron and Positronium in Polymers 5.1.7. Conclusion 5.2. Fluorescence Probe Methods 5.2.1. Introduction 5.2.2. The Fluorescence Phenomenon 5.2.3. Fluorescence Quenching Techniques 5.2.4. Fluorescence Polarization Techniques 5.2.5. Energy Transfer Probes 5.2.6. Probe Selection 5.2.7. Instrumentation 5.3. Paramagnetic Probe Techniques 5.3.1. ESR Spectroscopy-Theory 5.3.2. ESR Spectroscopy-Instrumentation 5.3.3. Paramagnetic Probes 5.3.4. Spin-Probe and Spin-Label Applications to Synthetic Polymers 5.4. Small-Angle Neutron Scattering 5.4.1. Introduction 5.4.2. Elastic Neutron Scattering Cross Section at Small Angles 5.4.3. SANS Spectrometer Design 5.4.4. Experimental Results Part B: Crystal Structure and Morphology 6. X-Ray Diffraction 6.1. Unit Cell and Crystallinity 6.1.1. Introduction 6.1.2. Basic Crystallography 6.1.3. Diffraction Theory 6.1.4. Experimental Techniques 6.1.5. Crystal Structure Determination 6.1.6. Disorder in Crystalline Polymers 6.1.7. Measurement of Crystallinity by X-Ray Diffraction 6.2. Crystallite Size and Lamellar Thickness 6.2.1. Introduction 6.2.2. Crystallite Size by Wide-Angle Techniques 6.2.3. Lamellar Thickness Using Small-Angle X-Ray Scattering (SAXS) 6.2.4. Summary 7 . Electron Microscopy 7.1. Introduction 7.2. Fundamentals 7.2.1. Particle-Wave Concept 7.2.2. Image Formation 7.2.3. Image Interpretation 7.3. Electron Optics 7.3.1. Lens Theory 7.3.2. The Ideal Lens 7.3.3. Image-Degrading Factors 7.4. The Instrument 7.4.1. The Illuminating System 7.4.2. The Specimen Holder 7.4.3. The Objective Lens 7.4.4. The Projection System 7.5. Operational Considerations 7.5.1. Specimen Preparation 7.5.2. Focusing 7.5.3. Resolution 7.5.4. Magnification Calibration 7.6. Other Microscopy Techniques 7.6.1. Small-Angle Electron Diffraction 7.6.2. Stereomicrography 7.6.4. Scanning Electron Microscopy 7.6.3. Topographical Contrast Imaging 7.6.5. Scanning-Transmission Electron Microscopy . 7.6.6. Low-Loss Electron Microscopy 7.7. Applications 7.7.1. Single Molecules 7.7.2. Polymer Single Crystals 7.7.3. Melt-Crystallized Polymers 7.7.4. Oriented Polymers 8 . Chemical Methods in Polymer Physics 8.1. Disorder in Polymer Crystals and Chemical Methods . 8.2. Solvent-Etching 8.3. Plasma-Etching 8.4. The Surface Modification Techniques 8.4.1. Halogenation 8.4.2. Dehydrohalogenation of Poly(viny1idene Chloride) 8.4.3. Methoxymethylation of Polyamides 8.4.4. Acylation of Polystyrene 8.5. The Surface Degradation Techniques 8.5.1. Selective Degradation Reagents 8.5.2. Nitric Acid Degradation 8.5.3. Ozone Degradation 8.5.4. Deduction of Crystal Morphology 8.5.5. Location of Unsaturation and Branches 8.5.6. A Test for Random Attack 8.5.7. Preparation of Low-Molecular-Weight Fractions for GPC 8.5.8. Hydrolysis 8.5.9. Degradation by a Mixture of Potassium Permanganate and Sulfuric Acid 8.5.10. Hydrazinolysis of Polyamides 8.6. Irradiation and Selective Degradation 8.6.1. Radiation-Induced Chemical Changes 8.6.2. Location of the Chemical Changes 9 . Thermal Analysis of Polymers 9.1. Introduction 9.2. Instrumentation and Method 9.3. Theory 9.4. Basic Factors Affecting the DTA/DSC Curve 9.4.1. Instrumental Factors 9.4.2. Sample Factors 9.4.3. Reference Material 9.5. Melting Behavior of Polymers 9.5.1. Introduction 9.5.2. Dependence of Melting on Crystallization Conditions 9.5.3. Dependence of Melting on Molecular Weight and Molecular-Weight Distribution 9.5.4. Annealing 9.5.5. Effect of Heating Rate on Polymer Melting . 9.5.6. Multiple Melting Peaks 9.5.7. Dried and Suspension Crystals 9.5.8. The “True” Melting Point 9.6. Quantitative Methods 9.7. Other Applications 9.7.1. Phase Changes 9.7.2. Glass Transition 9.7.3. Polymerization 9.7.4. Identification 9.7.5. Polymer Reactions 9.7.6. Crystallization 9.8. Summary 10 . Nucleation and Crystallization 10.1 Introduction 10.1.1. Aims and Objectives 10.2 General Background on Semicrystalline Polymers 10.2.1. Requirements for Crystallization 10.2.2. Historical Development 10.3 Experimental Methods for Measuring Crystallization Rates 10.3.1. General Considerations 10.3.2. Methods Using a Thin-Film-Type Specimen 10.3.3. Methods Using a Bulk-Type Specimen 10.3.4. Differential Thermal Analysis (DTA) as Applied to the Determination of Tm0 10.3.5. Crystallization from Solution 10.4 Nucleation 10.4.1. Homogeneous Nucleation 10.4.2. Heterogeneous Nucleation Part C: Physical Properties 11. Viscoelastic and Steady-State Rheological Response 11.0. Introduction 1 11.1. Linear Viscoelastic Behavior 3 11.1.1. Definitions and Background 3 11.1.2. Instrumentation 21 11.2. Steady-State Response 44 11.2.1. Practical Solids 44 11.2.2. Viscoelastic Liquids 45 11.3. Nonlinear Viscoelastic Behavior 46 11.3.1. Nonlinear Steady-State Behavior of Viscoelastic Liquids 47 11.3.2. Nonlinear Transient and Dynamic Properties . 49 11.4. Pressure Effects on Viscoelastic Behavior 51 11.5. Sample Handling 52 11.5.1. Molding 52 11.5.2. Solution Mixing 56 11.5.3. Molecular Weight Blending 57 11.5.4. Film Casting 57 12. Further Mechanical Techniques 12.1. Ultrasonic Measurements 12.1.1. Introduction 59 12.1.2 . Immersion Apparatus 60 12.1.3. Other Experimental Techniques 75 12.1.4. Molecular Interpretation 79 12.1.5. Conclusions 89 12.2. Static High-Pressure Measurements on Polymers 12.2.1. Introduction 91 12.2.2. Types of Equipment 92 12.2.3. Response of Polymers to Static High Pressure 12.3. Stress-Strain Yield Testing of Solid Polymers 12.3.1. Introduction 12.3.2. Definitions 12.3.3. Methods for Measuring Strain 12.3.4. Test Method 12.3.5. Significance of Results 13 . Production and Measurement of Orientation 13.1. Introduction 13.2. The Production of Orientation 13.3. Description of Orientation 13.4. Measurement of Orientation 13.4.1. Wide-Angle X-Ray Diffraction 13.4.2. Birefringence 13.4.3. Sonic Modulus 13.4.4. Infrared Dichroism 13.4.5. Small-Angle X-Ray Scattering 14 . ESR Study of Polymer Fracture 14.1. Introduction 14.2. Basic Theory and Experimental Techniques 14.2.1. Principle of ESR Method 14.2.2. Radical Concentration 14.2.3. System for Observing Mechanically Generated Radicals 14.3. Radical Formation by Mechanical Fracture of Polymers 14.3.1, Radical Species 14.3.2. Reaction and Location of Radicals 14.3.3. Radical Concentration and Fracture Surface 14.4. Radical Formation during Tensile Deformation and Fracture of Oriented Crystalline Polymers 14.4.1. Radical Species 14.4.2. Reactivity and Location of Radicals 14.4.3. Radical Concentration 14.4.4. Constant-Rate and Stepwise Stretching 14.4.5. Effects of Temperature and Heat-Treatment . 14.4.6. Effects of Strain Rate and Cyclic Loading 14.5. Fracture in Elastomers 14.5.1, Ozone-Stress Cracking 14.5.2. Low-Temperature Deformation of Preoriented Rubbers and Granular Filled Rubbers 14.6. Molecular Mechanism of Deformation and Fracture of Polymers 14.6.1. Some Models of Polymer Fracture and Polymer Morphology 14.6.2. Molecular Models of Deformation and Fracture Mainly Based on ESR Results 14.7. Limitations of ESR Method and Comparison with Associated Studies 14.7.1. Problems in ESR Investigations 14.7.2. Other Methods for Studying Micromechanism of Polymer Deformation and Fracture 15 . Methods by Studying Crazing 15.1. Introduction 15.2. Structure 15.2.2. Electron Microscopy 15.2.3. The Stress Field 15.3. Initiation and Growth 15.3.1. Stress Criteria for Initiation 15.3.2. Growth of Crazes 15.4. Environmental Effects in Liquids and Gases 15.5. Relationship of Crazing to Macroscopic Mechanical Behavior 15.5.1. The Stress-Strain Curve 15.5.2. Creep 15.5.3. The Size Effect 15.5.4. Shear Flow and Crazing 15.5.5. Fracture 15.5.6. High-Impact-Strength Polymers 16 . Polymeric Alloys 16.1. Introduction 16.2. Thermodynamics 16.2.1. Polymer Mixtures 16.2.2. Block Copolymers 16.2.3. Polymer-Polymer Interphase 16.2.4. Segmental Polymer-Polymer Interaction Parameter 16.3. Direct Observation 16.3.1. Visual Observation 16.3.2. Optical Microscopy 16.3.3. Electron Microscopy 16.4. Scattering Techniques 16.4.1. Small-Angle Light Scattering (SALS) 16.4.2. Small-Angle X-Ray Scattering (SAXS) 16.4.3. Small-Angle Neutron Scattering (SANS) 16.5. Glass Transition Temperature Measurements 16.5.1. Tg of Mixtures of Polymers 16.5.2. TB of Block Copolymers 16.6. Conclusion 17 . Permeation. Diffusion. and Sorption of Gases and Vapors 17.1. Introduction 17.2. Historical Perspective 17.2.2. Experimental Methods 17.2.1. Theory 17.3. Phenomenology 17.3.1. Correlation and Estimation of Transport and Solubility Coefficients 17.3.2. Effects of Polymer Composition and Morphology on Transport Rates 17.3.3. Transport of Water Vapor 17.3.4. Concentration-Dependent Fickian Diffusion in Rubbery Polymers 17.3.5. Dual-Mode Sorption and Diffusion in Glassy Polymers 17.3.6. Anomalous Transport of Vapors in Glassy Polymers 17.3.7. Two-Stage Sorption of Swelling Penetrants in Glassy Polymers 17.4. Categories of Experimental Methods 17.5. Pressure Measurement and Temperature Control 17.6. Sorption Methods 17.6.1. Experiments and Data 17.6.2. Calculations 17.6.3. Experimental Methods 17.7. Integral Permeation (Closed Receiving Volume) Methods 17.7.1. Experiments and Data 17.7.2. Calculations 17.7.3. Experimental Methods 17.8. Differential Permeation and Weighing Cup (Open Receiving Volume) Methods 17.8.1. Experiments and Data 17.8.2. Calculations 17.8.3. Experimental Methods 17.9. Sources and Minimization of Errors 17.9.1. Operating Procedures 17.9.2. Data Analysis 17.9.3. System Dynamics 18 . Electrical Methods 18.1. Dielectric Constant and Loss 18.1.1. Introduction 18.1.2. Phenomenology of Dielectrics 18.1.3. Experimental Procedures 18.2. Static Electricity 18.2.1. Introduction 18.2.2. Methods of Measuring Charge 18.2.3. Contact Electrification 18.2.4. Radiation Charging 18.2.5. Charge Migration 18.3. Electric Breakdown 18.3.1. Introduction 18.3.2. Mechanisms of Breakdown 18.3.3. Specimen Preparation 18.3.4. Experimental Methods 18.3.5. High-Field Conduction 下载链接: Part A: Molecular Structure and Dynamics http://ifile.it/5vus61b/___5_experimental_physics.rar Part B: Crystal Structure and Morphology http://ifile.it/5cezlg6/2_Polymers__Part_B1.rar Part C: Physical Properties http://ifile.it/ykloqma/0.rar [ Last edited by zs85627 on 2010-2-12 at 23:22 ] |
» 收录本帖的淘帖专辑推荐
好书! | my file |
» 猜你喜欢
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
假如你的研究生提出不合理要求
已经有6人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
不自信的我
已经有12人回复
所感
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有28人回复
要不要辞职读博?
已经有7人回复
北核录用
已经有3人回复
» 本主题相关商家推荐: (我也要在这里推广)
|
本帖内容被屏蔽 |
9楼2010-02-07 13:44:34
6楼2010-02-07 07:30:08
14楼2010-02-14 14:15:04
简单回复
lanxzh10楼
2010-02-08 10:05
回复



















回复此楼
