24小时热门版块排行榜    

查看: 691  |  回复: 6
当前主题已经存档。

雪夕

金虫 (初入文坛)

[交流] 求两段话的翻译

The large scale synthesis of long-range arrays of magnetic
nanoparticles is an important issue in the development of
nanostructured materials attractive both from a fundamental point
of view and from their technological applications in magnetic
storage and biomedicine.1 In these materials, magnetic properties
of individual nanoparticles can be modulated by coupling
magnetostatic interactions with neighboring nanoparticles in order
to provide some collective behavior with unique cooperative2 or
spin-related transport phenomena.3 In addition, in contrast to
random mixtures of nanoparticles, ordered arrays can provide
uniformity of packing, stoichiometry, and rigorous control of
the interparticle distance. The commonly chosen approach to
promote nanoparticle self-assembly consists of the deposition
on a solid surface4 or on a liquid-liquid interface5 of nanoparticles
surrounded with appropriate ligands to favor strong interligand
interactions. Another approach, called templated self-assembly,
makes use of substrates lithographically patterned with grooves
into which nanoparticles can be self-assembled.6
In recent years, the self-organization of magnetic nanoparticles
in two- or three-dimensional assemblies has also been performed
by using liquid crystals (LCs).7 It should be noted that the rules
governing the appearance and stability of the various phases of
LCs are now well-understood and the fluid nature of their
mesophases makes these materials intrinsically defect tolerant,
that is favorable to the nanoparticle integration and organization.
In this connection, several works on the incorporation, the selfassembling,
as well as the in situ synthesis and organization of
magnetic nano-objects at the nanoscale in a thermotropic LC
phase have been reported.8 However, to the best of our knowledge,
magnetic coordination polymer nanoparticles have never been
synthesized and organized into a LC.
Coordination polymer nanoparticles are a relatively new type
of nano-objects which have attracted an increasing interest in the
recent 8 years due to their fundamental interest and their potential
applications. As metallic or metal oxide nano-objects,9 due to
the very important surface/core atoms ratio and size reduction,
these ultrasmall nanoparticles presenting a size lower than 10
nmoften exhibit an appearance of new interesting size-dependent
physical and chemical properties, which are different in
comparison to the properties of their bulk analogues.10 The first
work on the synthesis of cubic shaped nanocrystals (∼12-50
nm) of cyano-bridged homometallic “Prussian Blue” nanoparticles stabilized within reverse micelles was reported by Mann
and co-workers.11 After that, the synthesis of coordination polymer
nanoparticles of different size has been performed by using a
reverse micelle technique,12 by stabilization of nanoparticles
within various matrixes, such as polymers,13 biopolymers,14
structured alumina,15 amorphous and mesostructured silica,16 or
by using stabilizing ligands17 in solutions. These methods allow
the synthesis of nanocomposites or stable colloids in which the
nanoparticles of adjustable size are homogeneously dispersed
either into a matrix or into a solution. Along this line of thought,
we recently reported on the synthesis and study of a large range
of cyano-bridged homo- and heterometallic coordination polymer
nanoparticles within the isotropic 1-butyl-3-methyl imidazolium
ionic liquid (IL), which act both as stabilizing agent and as
solvent.18 In this system, the ultrasmall magnetic nanoparticles
of controlled size of 3-6 nm are randomly dispersed into the
IL and the magnetostatic interactions between these nanoparticles
may be modulated by their concentration. By the appropriate
choice of N-alkyl substituent and counteranions, it is possible
to generate ILs that possess properties of ionic liquid crystals
(ILCs) and attempt to organize coordination polymer nanoparticles
at the nanoscale level. In the present work, we report on the in
situ organization into a two-dimensional array ofMn1.5[Cr(CN)6]
nanoparticles within the ILC 1-dodecyl-3-methylimidazolium
tetrafluoroborate, [C12-MIM]BF4, their textural and structural
characteristics, and their magnetic properties.Aspecial emphasis
is given on the comparison of these organized nanoparticles with
nanoparticles of the same chemical composition which are
randomly dispersed in an isotropic IL, [C10-MIM]BF4.

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

jakejzhy

铜虫 (正式写手)

你可以google一下
2楼2010-01-24 19:25:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

slowstar

木虫 (职业作家)

快的话,今晚上帮你译好,最迟明天上午。
精韧不怠,日进有功
3楼2010-01-24 20:37:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

slowstar

木虫 (职业作家)

已译好前两段,第三段还在努力。
     大规模合成长程(有序)阵列的磁性纳米粒子在纳米结构材料的发展中是一个重要的焦点,这可从基础研究的角度和它们在磁存储器以及生物医药领域里的技术应用这两方面看到它们的吸引人之处[1]。在这些材料里,单一(或一维)纳米粒子的磁性可通过耦合与相邻纳米粒子间的静磁作用来调控,以获得一些具有独特协同作用[2]或自旋相关的传输现象[3]的集合效应。此外,与纳米粒子的随机无序混合物相比,有序阵列能获得均一的堆积、化学计量以及严格控制的粒子间距离。通常选择的用以促进纳米粒子自组装的途径包括沉积于固体表面[4]或沉积于被具有强配体间相互作用的适当配体环绕于周围的纳米粒子的液-液界面[5]。另一个称为模板自组装的途径是利用基底印刷模板上的凹槽图案并使纳米粒子在凹槽图案里自组装[6]。
    近年来,二维或三维磁性纳米粒子自组装体也已通过液晶(LCs)法[7] 获得。应该注意的是,控制液晶各种相的形貌和稳定性的原理已被很好地理解,而且它们中间相(介晶相)的流体特性也使得这些材料具有本征的缺陷相容性,这种缺陷相容性有利于纳米粒子的集合和组装。关于这一点,已有几个研究工作报道了在掺混、自组装以及热致液晶相里纳米范围的磁性纳米目标物的原位合成和组装方面的应用[8]。然而,据我们所知,磁性配位络合聚合物纳米粒子从未被合成并组装到液晶里。
精韧不怠,日进有功
4楼2010-01-24 22:18:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

雪夕

金虫 (初入文坛)

引用回帖:
Originally posted by slowstar at 2010-01-24 22:18:07:
已译好前两段,第三段还在努力。
     大规模合成长程(有序)阵列的磁性纳米粒子在纳米结构材料的发展中是一个重要的焦点,这可从基础研究的角度和它们在磁存储器以及生物医药领域里的技术应用这两方面看到它们 ...

好的,辛苦你了!
5楼2010-01-25 09:08:31
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

slowstar

木虫 (职业作家)

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ...
雪夕(金币+150):很感谢你的翻译,翻译的太好了,谢谢! 1-25 10:34
配位络合聚合物纳米粒子是一类相对新颖的纳米目标物,由于其具有基础研究价值和潜在的应用前景,因而在最近八年里受到了越来越多的关注。对于金属单质或金属氧化物纳米体[9],由于它们具有非常重要的 表面/核 原子比例及粒径 减小效应,因而这些粒径小于10nm的超细纳米粒子常常会表现出与它们相应的大颗粒物[10]不同的有趣的与粒径大小关联的物理及化学性质。Mann及其合作者[11]首先合成了可稳定存在于反胶束溶液里的具有立方相纳米晶(约12-50nm)的氰基桥联均相金属“普鲁士蓝”纳米粒子。此后,人们合成了不同粒径大小的配位络合聚合物纳米粒子,方法有反胶束技术[12],以及将纳米粒子稳定于各种基体里如聚合物[13]、生物聚合物[14] 、结构化氧化铝[15] 、无定形和介孔氧化硅[16],或者在溶液里使用稳定化配体[17]。这些方法可合成得到纳米复合体或者稳定胶体,在这些稳定胶体里粒径可调的纳米粒子可均相分散于基体或溶液里。基于这点考虑,我们最近报道了在各向同性的既作为稳定试剂又作为溶剂的1-丁基-3-甲基-咪唑鎓离子液体(IL)[18]里合成大范围有序氰基桥联均相及多相金属配位络合聚合物纳米粒子的研究工作。在该体系里,粒径控制为3-6nm的超稳磁性纳米粒子随机分散于离子液体里,并且有可能通过调节浓度来调控纳米粒子间的静磁作用。通过选择适当的N-取代烷基及平衡阴离子,有可能获得具有离子液晶(ILCs) 性质的离子液体,甚至有望在纳米尺度上组装配位络合聚合物纳米粒子。在本文工作里,我们报道了在离子液晶(ILCs) 1-十二烷基-3-甲基-咪唑鎓四氟硼酸[C12-MIM]BF4里原位组装了Mn1.5[Cr(CN)6] 纳米粒子的二维阵列,并研究了它们的织构性质以及磁性。重点比较了自组装纳米粒子与具有相同化学组成但随机分散于各向同性的离子液体(IL)[C10-MIM]BF4 里的纳米粒子的差异。
精韧不怠,日进有功
6楼2010-01-25 10:18:13
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
7楼2010-01-25 10:47:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 雪夕 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见