24小时热门版块排行榜    

CyRhmU.jpeg
查看: 950  |  回复: 5
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

formleaf

木虫 (正式写手)

[交流] 【转帖】费尔马最后的定理

http://book.ifeng.com/section.php?book_id=1737&id=119656

  英国哲学家阿尔弗雷德·怀特海把17世纪称为"天才的世纪"。在那个世纪之初,也即距今整整四百年前,诞生了伟大的法国数学家皮埃尔·德·费尔马。在费尔马之后,法国人帕斯卡尔、荷兰人惠更斯、英国人牛顿和德国人莱布尼茨接连出世;而在费尔马之前,德国人开普勒、意大利人伽利略和法国人笛卡尔生命中的大部分时光也是在17世纪度过的。在这八位彪炳史册的科学巨人中,唯有费尔马把他的全部才智奉献给了纯粹数学,即被牛顿斥为"无意义的谜语的相互逗趣"的理论。

  与此相反,牛顿把他的数学应用于物理世界,诸如计算出从行星轨道到炮弹飞行轨迹等各种问题,他对数学所做的唯一划时代贡献便是创立了微积分,一门最初仅用来描述与距离、速度和加速度有关的引力定律或力学定律的科学分支。虽然如此,并且随后又发生了与莱布尼茨的微积分发明"优先权"之争,牛顿依然得以跻身历史上最伟大的数学家之列。而在牛顿去世两百多年以后,有人才在他的一篇文章中发现一个注记,原来他的微积分是在"费尔马先生画切线的方法"基础上发展起来的。

  由此我们产生了一个疑问:为什么费尔马没有去走最后那并非最困难的一步?与其说当时英国的工业革命已走在法国人的前面,倒不如说还有一项事业更让费尔马倾心,即在任何时代都容易被认为毫无用处的数学分支--数论。如果再大胆一点,我们甚至可以推测费尔马当时已经预见到,微积分的出现会扭转整个数学的研究方向,会把数学家们卷入到在他看来并不太有趣的繁琐事务中去,因而他宁肯不要发明权这份荣誉。这个观点并非危言耸听,假如考虑到那个被称为"费尔马大定理"或"费尔马最后的定理"(Fermat?蒺sLastTheorem)的谜语在他身后三百五十多年才得以揭开的话。

  二

  1601年,费尔马出生在法国南部米迪比利牛斯大区塔恩-加龙省的小镇博蒙·德洛马涅,父亲是一位富有的皮革商人,这使他有机会进入方济各会修道院学习,随后又来到附近的图卢兹大学做事。图卢兹是上加龙省的首府,也是米迪比利牛斯大区的中心城市,11世纪前后那里曾是法国抵御穆斯林的西班牙入侵的前沿阵地。三十岁那年,费尔马遵从家人的意愿,开始了文职官员的生涯,他被任命为隶属图卢兹议会的上访接待室的法律顾问,在本地和国王之间提供极其重要的联系,同时保证来自巴黎的指令在本地区得以执行。

  费尔马的仕途颇为顺利,很快成为当地有头有脸的人物,甚至有资格以德(de)作为姓氏的一部分。可是,这并非他的雄心所致,而是当时蔓延欧洲的腺鼠疫帮了忙,幸存者被提升去填补死亡者的空缺。值得一提的是,若干年以后,这场鼠疫传播到了英吉利海峡的对岸,也帮了艾萨克·牛顿一个忙。由于就读的剑桥大学关闭,二十三岁的牛顿回到故乡,正是在躲避瘟疫的两年时间里,他冥思苦想,完成了科学生涯的大部分发现,包括微积分和万有引力定律的建立。

  费尔马如今被誉为"业余数学家之王",这方面的兴趣和才能在他早年所受教育里没有任何佐证。对他最有影响的导师是一部叫《算术》的古希腊著作,那是古代世界最后一部重要的数学著作。该书作者是亚历山大的丢番图,其生活的年代已不可考,人们只能大致推断是在纪年前后的五百年间。在躲过了基督教和伊斯兰教的双重劫难以后,包括欧几里得的《几何原本》在内的希腊数学名著在12世纪由阿拉伯文翻译成了拉丁文,那是数学史上有名的翻译时代,阿拉伯和印度的数学成就也在这个时候被介绍到了西方,其中尤以巴格达的花拉子密最负盛名,正是他命名了代数学。

  实际上,在欧洲人放弃对高尚的真理追求的时候,阿拉伯人悄悄地把那些从亚历山大里亚的余烬中拾取出来的知识汇总起来,并用新的更为有效的语言重新加以解释和保存(这件事让人感觉到,上个世纪末开始的西方对巴格达的围剿有些不可思议)。奇怪的是,丢番图的《算术》却似乎从未进入过阿拉伯学者的视线,直到1453年,土耳其人洗劫了君士坦丁堡,即那座如今横跨亚欧两大洲的城市--伊斯坦布尔,这部书的一个希腊文残本才被逃往西方的拜占庭学者带出。这场劫难与发生在图卢兹的那次鼠疫正好相隔了两个世纪,等到《算术》终于被一位法国古典学者翻译成拉丁语并自费出版时,费尔马刚好满二十岁,数学史上的一个重要角色注定要由他来扮演。

  费尔马担任的司法事务占据了他白天的工作时间,而夜晚和假日几乎全被他用来研究数学了。部分原因是那个时候的法国反对法官们参加社交活动,理由是朋友和熟人可能有一天被法庭传唤,与当地居民过分亲密会导致偏袒。正是由于孤立于图卢兹上流社会的交际圈之外,费尔马才得以专心于他的业余爱好。除了前面提到的因为切线及其极值点方法的使用被认为是微分学的创始人以外,他还独立于笛卡尔发现了解析几何的基本原理,并通过和帕斯卡尔的通信共同创立了概率论。甚至在光学方面,也有流传至今的所谓"费尔马原理",即光线永远沿使其经历的时间最短的路径行进。

  三

  然而,所有这些工作在费尔马心目中均不如他写在《算术》书页空边上的一系列短小的评注重要,那些纯粹属于智力的数字游戏,他一直被一种强烈的欲望--想要了解自然数的性质以及它们之间的相互关系--所驱使。《算术》虽然成书在一千多年前,可是中间隔着漫长的中世纪,大量的数学经典文献被完全遗忘了,费尔马得到此书一定如获至宝。书中提出了一百多个数学问题,丢番图本人逐一予以解答,这种认真的做法却不是费尔马的习惯。在研究丢番图的问题和解答时,费尔马经常得到启示去思索和解决一些相关的微妙问题。令人庆幸的是,这部译著的每一页书边都留有宽大的空白,有时候他会匆匆地在那里写下推理或评注。

  对于后世的数学家们来说,这些不太详尽的注记成了用之不竭的一笔财富。像那个时代的大多数数学家一样,费尔马对自己的研究结果守口如瓶,如果没有一个叫梅森的神甫的竭力鼓动,他甚至可能不会与别的数学家通信。这位神甫不仅热衷探讨整数的性质(他以梅森素数在数学史上留芳),而且喜欢旅行和传播消息,并定期安排数学家们的各种聚会--这与两个世纪以后现代主义诗人们的活动颇为相似,他的圈子后来形成法兰西学院的雏形。不过,梅森也因为"泄密"得罪了笛卡尔那样的朋友,可是,对于生活在边远山区的费尔马来说,神甫的每次到访都是受欢迎的,他的影响力大概仅次于丢番图的《算术》。

  尽管梅森神甫一再鼓励,费尔马仍固执地拒绝发表自己的结果,他是个缄默的天才,放弃了许多次成名的机会。得到人们的承认对他来说毫无意义,唯有新的定理的发现带给他秘密的喜悦,这一点足以让他感到满足。然而,这位隐身独处的天才有一种不可避免的邪恶的癖好,他和别人的通信其实是一种智力上的挑逗。费尔马经常写信叙述他的最新定理,却不愿意透露任何证明的线索,这种挑衅性的行为着实使收信人恼恨,笛卡尔就指责他为"吹牛者",牛顿的前辈沃利斯则管他叫"那个该诅咒的法国佬"。

  费尔马尤其喜欢捉弄海峡对岸的同行,因为直到他生活的年代,英国尚未产生过一位可以和他媲美的数学家。六十四岁那年,费尔马到邻近的塔恩省的小镇卡斯特尔执行公务,不幸染上一种严重的疾病去世。综观费尔马的一生,他的活动范围不超过两百公里,这一点与佛陀释迦牟尼一模一样。著名的英国古典学者贡布里希爵士在谈到文艺复兴初期的意大利画家乔托时指出:"在乔托之前,人们看待艺术家就像看待一个出色的木匠和裁缝一样,他们甚至不在自己的作品上署名。"同样,当帕斯卡尔或其他朋友催促费尔马发表某个结果时,他回答说:"不管我的哪项工作被确认值得发表,我也不想在其中出现我的名字。"

  由于费尔马与巴黎的数学界不相往来,他的通信者对他未必怀有好感,因此当他在梅森神甫之后突然去世时,他的各种发现处于被永远遗失的危险之中。幸亏费尔马的长子克莱蒙-塞缪尔(他对数学的贡献如同卡夫卡的遗嘱执行人布罗德对文学的贡献)意识到父亲的业余爱好具有重要的价值,他花了五年时间研读父亲涂写在页边的文字,整理出了四十八条评注。1670年,一本叫《附有皮埃尔·德·费尔马评注的丢番图的算术》的书在图卢兹出版了,而被后人称为"费尔马最后的定理"(费尔马从未与通信者提起过)即为其中的第二条评注。



  数学家们奉行的保密原则起始于古希腊,早在公元前6世纪,神秘主义哲学家毕达哥拉斯就严格禁止他的弟子们把数学发现泄密给外人,否则会招来杀身之祸。毕达哥拉斯意识到从音乐的和声到行星的轨道,一切事物均含有数,他因此宣称"万物皆数",他创造的"数学"这个词的希腊文原意便是"可以学到的知识"。毕氏学派最有意味的发现之一是所谓的"毕达哥拉斯定理",即直角三角形的两个直角边长的平方和等于斜边长的平方和。虽然中国人和巴比伦人发现这个秘密比希腊人要早得多,可是他们都没能给出证明。

  毕达哥拉斯不仅予以严格的证明,并且从这个几何问题中提炼出有关整数的方程(后人称此类方程为丢番图方程),即如何将一个平方数写成两个平方数之和。他探讨了满足这个方程的所有三元数组,其中最小的一组当然是(3,4,5)。在丢番图的《算术》里,这个问题的编号是第八,正是在靠近问题八的页边上,费尔马写下了下面这段文字:"不可能将一个立方数写成两个立方数之和,或者,将一个四次幂写成两个四次幂之和,总之,不可能将一个高于二次的幂写成两个同次幂的数之和。"

  在这个评注的后面,这位好恶作剧的遁世者又草草地写下一个附加的注中之注:"对此命题我有一个非常美妙的证明,可惜此处的空白太小,写不下来。"随着克莱蒙-塞缪尔所编的书的出版,这个问题在后来的三百多年间闻名于世,同时也苦恼了一代又一代最有智慧的头脑,包括欧拉和柯西这样伟大的数学家都曾经全身心地投入并栽了跟头。为此,法国科学院在19世纪中叶设立了第一笔奖金,结果却给了对法国怀有仇恨的德国人库默尔,他的工作说明了证明费尔马大定理的希望非常渺小。

  在库默尔去世十五年以后,另一位德国人保罗·沃尔夫斯凯尔为破译费尔马的谜语注入了新的活力。保罗出生在殷富人家,虽然他的一生大部分时间花在经商上,却始终对数论有着特别的迷恋。有一天晚上,保罗因为一位漂亮女性的离去准备自杀,却因为阅读费尔马问题的经典文献入了迷,错过了与死神约会的时间。可以说,是"费尔马最后的定理"重新唤起了他生命的欲望,为此他后来立下遗嘱,用十万马克(约合现在的一百万英镑)奖给第一个证明它的人。

  最后,在上个世纪行将结束之际,在费尔马的其他问题和评注全部解决之后,一位叫安德鲁·怀尔斯的沉默寡言的英国人,澄清了这个历史疑案,领走了那份诱人的奖金。其时怀尔斯受聘于美国的普林斯顿大学,可他却返回祖国,在母校剑桥大学的艾萨克·牛顿研究所宣布这一结果,这似乎是对当年目空一切的费尔马的一个有礼貌的回敬。虽然怀尔斯的这个证明不久以后被发现有问题,但是经过他两年的不懈努力,尤其是得到一位叫泰勒的同胞的帮助以后,漏洞终于被彻底地修补好了。

  怀尔斯是个幸运儿,他实际上证明的是以两位日本数学家名字命名的谷山-志村猜想,后者可以直接导出费尔马大定理,这种内在的联系仅仅是在十年前才由一位德国数学家提出,而后由一位美国数学家证实的。假如完成这两项工作的时间互换一下,即先证明谷山-志村猜想,再证明猜想和大定理之间的递推关系,那份至高的荣誉就落在那个美国人头上了。值得一提的是,谷山和志村在而立之年就提出了猜想,他们属于日本战后最富创造力的一代,虽然所受的教育并不完整。1958年,年仅三十一岁的谷山在寓所里自杀,他的遗嘱表明,他对自己的生活失去了信心,他至死都不知道自己工作的伟大意义。

  怀尔斯的证明动用了现代数学许多最深刻的结果和方法,这些工作中的相当一部分都是受"费尔马最后的定理"的刺激发展起来的。现在,这只下金蛋的鸡终于被宰吃了,数学家们需要多少个世纪才能重新找回,无人能够做出预测。当这条惊人的消息从剑桥传出,我正在香港大学参加一个国际学术会议,当代最伟大的数论学家之一、挪威出生的美国人赛尔伯格刚做完了一次特邀报告,他念叨着那位年轻的普林斯顿同事的名字,脸上露出一丝难言的笑容。四十多年前,赛尔贝格因为用初等方法证明了"素数定理"获得菲尔兹奖,现在他终于要彻底退休了。1

  自从牛顿和莱布尼茨发明微积分以后,数学的应用价值越来越为人们所知,数学家们被迫去从事一些新领域的研究,这些领域包括从粒子物理到生命科学、从航空技术到地质勘探等几乎一切应用学科。与此同时,在这个越来越讲究实际的时代,以费尔马毕生钟爱的数论为代表的纯粹数学逐渐不为人重视。或许是害怕被人冷落,数学家们每隔一段时间会炮制出一条特大新闻,费尔马的头像上了《纽约时报》的头版头条。在"费尔马最后的定理"之后,数学宝库里还有黎曼猜想、哥德巴赫猜想和孪生素数猜想,还有毕达哥拉斯时代遗留下来的完美数和友好数问题。这些问题或猜想有的难度更大,有的历史更久,可是就传奇色彩来说,却没有一个比得上"费尔马最后的定理"。
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

nest代数

银虫 (正式写手)

天才的费马,天才的怀尔斯。
6楼2009-12-21 22:36:55
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 6 个回答

nono2009

超级版主 (文学泰斗)

No gains, no pains.

优秀区长优秀区长优秀区长优秀区长优秀版主


小木虫(金币+0.5):恭喜抢沙发,给个红包
这只会下金蛋的母鸡终于给人宰了
2楼2009-12-19 11:01:55
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

userhung

禁虫 (文学泰斗)

木虫博士


小木虫(金币+0.2):抢了个小板凳,给个红包
引用回帖:
Originally posted by nono2009 at 2009-12-19 11:01:
这只会下金蛋的母鸡终于给人宰了

对头哦~~~
3楼2009-12-19 20:03:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

π31415926

铜虫 (初入文坛)


formleaf(金币+1,VIP+0):鼓励一下新虫 12-21 19:27
数学可以描述一切
人的特殊之处在于人类作为宇宙的产物而可以描述宇宙
5楼2009-12-21 14:04:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复(可上传附件)
信息提示
请填处理意见