| 查看: 290 | 回复: 1 | |||
| 当前主题已经存档。 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 wxcl8826 的 10 个金币 | |||
wxcl8826木虫 (小有名气)
|
[交流]
【求助】激发态计算中跃迁矩阵元【以搜索无重复】
|
||
|
利用guassion 03怎么找激发态输出文件中的跃迁矩阵元?一共两个,谢谢! ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Si O 1 B1 O 1 B2 2 A1 Variables: B1 1.51042 B2 1.51042 A1 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 14 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.510422 3 8 0 0.000000 0.000000 -1.510422 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Si 0.000000 2 O 1.510422 0.000000 3 O 1.510422 3.020844 0.000000 Stoichiometry O2Si Framework group D*H[O(Si),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 14 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.510422 3 8 0 0.000000 0.000000 -1.510422 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 6.9248229 6.9248229 Standard basis: 6-311G(d,p) (5D, 7F) There are 17 symmetry adapted basis functions of AG symmetry. There are 2 symmetry adapted basis functions of B1G symmetry. There are 5 symmetry adapted basis functions of B2G symmetry. There are 5 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 9 symmetry adapted basis functions of B2U symmetry. There are 9 symmetry adapted basis functions of B3U symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 62 basis functions, 110 primitive gaussians, 65 cartesian basis functions 15 alpha electrons 15 beta electrons nuclear repulsion energy 89.6897458623 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.76D+00 NAtFMM= 60 Big=F One-electron integrals computed using PRISM. NBasis= 62 RedAO= T NBF= 17 2 5 5 1 14 9 9 NBsUse= 62 1.00D-06 NBFU= 17 2 5 5 1 14 9 9 Harris functional with IExCor= 406 diagonalized for initial guess. ExpMin= 6.54D-02 ExpMax= 6.94D+04 ExpMxC= 2.33D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 406 AccDes= 0.00D+00 IRadAn= 4 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) Virtual (SGG) (PIU) (PIU) (SGU) (PIU) (PIU) (SGG) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (SGU) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (PIU) (PIU) (SGG) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGG) (PIU) (PIU) (SGU) (SGG) (SGU) (SGG) The electronic state of the initial guess is 1-SGG. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 2928958. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-VWN+P86) = -440.526363639 A.U. after 11 cycles Convg = 0.5543D-08 -V/T = 2.0029 S**2 = 0.0000 ExpMin= 6.54D-02 ExpMax= 6.94D+04 ExpMxC= 2.33D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 8 62 NBasis= 62 NAE= 15 NBE= 15 NFC= 7 NFV= 0 NROrb= 55 NOA= 8 NOB= 8 NVA= 47 NVB= 47 Would need an additional 1043299 words for in-memory AO integral storage. Orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGG) (PIU) (PIU) (SGU) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) Virtual (SGG) (PIU) (PIU) (SGU) (PIU) (PIU) (SGG) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (PIU) (PIU) (SGU) (SGG) (SGG) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGG) (PIU) (PIU) (SGU) (SGG) (SGU) (SGG) 40 initial guesses have been made. Convergence on wavefunction: 0.001000000000000 Iteration 1 Dimension 40 NMult 40 CISAX will form 40 AO SS matrices at one time. Iteration 2 Dimension 50 NMult 50 Iteration 3 Dimension 60 NMult 60 Iteration 4 Dimension 70 NMult 70 Iteration 5 Dimension 74 NMult 74 Convergence on energies, max DE= 3.46D-08. *********************************************************************** Excited states from *********************************************************************** Ground to excited state Transition electric dipole moments (Au): state X Y Z Osc. 1 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 3 -0.7559 0.1827 0.0000 0.0856 4 -0.1827 -0.7559 0.0000 0.0856 5 0.0000 0.0000 -0.4898 0.0366 Ground to excited state transition velocity dipole Moments (Au): state X Y Z Osc. 1 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 3 0.1432 -0.0346 0.0000 0.0681 4 0.0346 0.1432 0.0000 0.0681 5 0.0000 0.0000 0.1496 0.0653 Ground to excited state transition magnetic dipole Moments (Au): state X Y Z 1 -0.0255 0.2494 0.0000 2 -0.2494 -0.0255 0.0000 3 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 <0|del|b> * (Au), Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss) state X Y Z R(velocity) 1 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 <0|r|b> * (Au), Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss) state X Y Z R(length) 1 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 <0|del|b> * (Au) state X Y Z Osc.(frdel) 1 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 3 -0.1082 -0.0063 0.0000 0.0764 4 -0.0063 -0.1082 0.0000 0.0764 5 0.0000 0.0000 -0.0733 0.0489 Ground to excited state transition densities written to RWF 633 Excitation energies and oscillator strengths: Excited state symmetry could not be determined. Excited State 1: Singlet-?Sym 4.3064 eV 287.91 nm f=0.0000 15 -> 16 0.68944 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Excited state symmetry could not be determined. Excited State 2: Singlet-?Sym 4.3064 eV 287.91 nm f=0.0000 14 -> 16 0.68944 Excited state symmetry could not be determined. Excited State 3: Singlet-?Sym 5.7803 eV 214.49 nm f=0.0856 12 -> 16 -0.15891 13 -> 16 0.65759 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 5.7803 eV 214.49 nm f=0.0856 12 -> 16 0.65759 13 -> 16 0.15891 Excited State 5: Singlet-SGU 6.2244 eV 199.19 nm f=0.0366 11 -> 16 0.61696 14 -> 17 0.23954 15 -> 18 0.23954 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGG) (PIU) (PIU) (SGU) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) Virtual (SGG) (PIU) (PIU) (SGU) (PIU) (PIU) (SGG) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (PIU) (PIU) (SGU) (SGG) (SGG) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGG) (PIU) (PIU) (SGU) (SGG) (SGU) (SGG) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -66.18895 -19.16011 -19.16008 -5.38044 -3.73434 Alpha occ. eigenvalues -- -3.73434 -3.72801 -1.02377 -0.99859 -0.49335 Alpha occ. eigenvalues -- -0.42099 -0.41081 -0.41081 -0.36963 -0.36963 Alpha virt. eigenvalues -- -0.15047 -0.05036 -0.05036 0.10499 0.14508 Alpha virt. eigenvalues -- 0.14508 0.26339 0.48800 0.50609 0.50622 Alpha virt. eigenvalues -- 0.60900 0.60900 0.70859 0.78074 0.78074 Alpha virt. eigenvalues -- 0.79339 0.87021 0.87021 1.04563 1.04563 Alpha virt. eigenvalues -- 1.06829 1.09950 1.30092 1.58759 2.76671 Alpha virt. eigenvalues -- 2.76671 2.78421 2.78421 2.78834 2.78834 Alpha virt. eigenvalues -- 3.03773 3.03773 3.33875 3.45811 4.71335 Alpha virt. eigenvalues -- 4.71335 4.80389 4.80389 4.91029 4.95737 Alpha virt. eigenvalues -- 5.81015 11.13131 11.13131 11.58058 49.71184 Alpha virt. eigenvalues -- 49.84204 140.88609 Condensed to atoms (all electrons): 1 2 3 1 Si 11.879927 0.483400 0.483400 2 O 0.483400 8.109451 -0.016215 3 O 0.483400 -0.016215 8.109451 Mulliken atomic charges: 1 1 Si 1.153273 2 O -0.576636 3 O -0.576636 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 Si 1.153273 2 O -0.576636 3 O -0.576636 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -19.6621 YY= -19.6621 ZZ= -32.3536 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 4.2305 YY= 4.2305 ZZ= -8.4610 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -19.0137 YYYY= -19.0137 ZZZZ= -199.2847 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -6.3379 XXZZ= -33.6569 YYZZ= -33.6569 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 8.968974586228D+01 E-N=-1.226062510553D+03 KE= 4.392412638697D+02 Symmetry AG KE= 2.796395272450D+02 Symmetry B1G KE= 7.177713949723D-34 Symmetry B2G KE= 4.480260369755D+00 Symmetry B3G KE= 4.480260369756D+00 Symmetry AU KE= 4.767271390862D-35 Symmetry B1U KE= 9.413430926762D+01 Symmetry B2U KE= 2.825345330878D+01 Symmetry B3U KE= 2.825345330878D+01 Test job not archived. 1|1|UNPC-UNK|SP|RTD-B3P86-FC|6-311G(d,p)|O2Si1|PCUSER|22-Nov-2009|0||# CIS-B3P86/6-311G(D,P) CIS=(NSTATES=5,ROOT=1) TEST||Title Card Require d||0,1|Si|O,1,1.510422|O,1,1.510422,2,180.||Version=x86-Win32-G03RevB. 02|State=1-SGG|HF=-440.5263636|RMSD=5.543e-009|PG=D*H [O(Si1),C*(O1.O1 )]||@ BOOKS ARE LIGHTHOUSES ERECTED IN THE GREAT SEA OF TIME. -- E.P.WHIPPLE Job cpu time: 0 days 0 hours 0 minutes 36.0 seconds. File lengths (MBytes): RWF= 20 Int= 0 D2E= 0 Chk= 9 Scr= 1 Normal termination of Gaussian 03 at Sun Nov 22 14:37:21 2009. [ Last edited by wxcl8826 on 2009-11-22 at 21:58 ] |
» 猜你喜欢
招贤纳博(已结束)
已经有28人回复
南京大学蔡亮课题组诚招2026年申请-考核制博士生2-3名(电解水制氢,XAFS谱学等)
已经有32人回复
物理化学论文润色/翻译怎么收费?
已经有61人回复
表征测试机构后台私聊我
已经有0人回复
求助各位大佬配位化学学习教材!!!
已经有0人回复
大连海事大学国家级人才团队2026年博士研究生招生启事
已经有10人回复
Coordination Chemistry Reviews
已经有0人回复
内蒙古大学青年长江学者王蕾教授课题组2026年博士招聘,2-3人
已经有10人回复
wxcl8826
木虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 1835.8
- 红花: 1
- 帖子: 269
- 在线: 26.3小时
- 虫号: 700198
- 注册: 2009-02-12
- 性别: GG
- 专业: 光谱分析
|
------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Si O 1 B1 O 1 B2 2 A1 Variables: B1 1.5162 B2 1.50604 A1 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 14 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.516201 3 8 0 0.000000 0.000000 -1.506040 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Si 0.000000 2 O 1.516201 0.000000 3 O 1.506040 3.022241 0.000000 Symmetry turned off by external request. Stoichiometry O2Si Framework group C*V[C*(OSiO)] Deg. of freedom 2 Full point group C*V NOp 4 Rotational constants (GHZ): 0.0000000 6.9183860 6.9183860 Standard basis: 6-311G(d,p) (5D, 7F) The following finite field(s) will be applied: An electric field of 0.0000 0.0000 0.0100 Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned off. 62 basis functions, 110 primitive gaussians, 65 cartesian basis functions 15 alpha electrons 15 beta electrons nuclear repulsion energy 89.6491743800 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 Big=F One-electron integrals computed using PRISM. NBasis= 62 RedAO= T NBF= 62 NBsUse= 62 1.00D-06 NBFU= 62 The nuclear repulsion energy is now 89.6507105006 hartrees. Harris functional with IExCor= 406 diagonalized for initial guess. ExpMin= 6.54D-02 ExpMax= 6.94D+04 ExpMxC= 2.33D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 406 AccDes= 0.00D+00 IRadAn= 4 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 2928808. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-VWN+P86) = -440.528155760 A.U. after 13 cycles Convg = 0.6187D-08 -V/T = 2.0029 S**2 = 0.0000 ExpMin= 6.54D-02 ExpMax= 6.94D+04 ExpMxC= 2.33D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 8 62 NBasis= 62 NAE= 15 NBE= 15 NFC= 7 NFV= 0 NROrb= 55 NOA= 8 NOB= 8 NVA= 47 NVB= 47 Would need an additional 1043299 words for in-memory AO integral storage. 20 initial guesses have been made. Convergence on wavefunction: 0.001000000000000 Iteration 1 Dimension 20 NMult 20 CISAX will form 20 AO SS matrices at one time. New state 1 was old state 2 New state 2 was old state 1 Iteration 2 Dimension 30 NMult 30 New state 1 was old state 2 New state 2 was old state 1 Iteration 3 Dimension 40 NMult 40 Iteration 4 Dimension 50 NMult 50 Iteration 5 Dimension 58 NMult 58 New state 1 was old state 2 New state 2 was old state 1 New state 3 was old state 4 New state 4 was old state 3 Convergence on energies, max DE= 2.80D-07. *********************************************************************** Excited states from *********************************************************************** Ground to excited state Transition electric dipole moments (Au): state X Y Z Osc. 1 0.0496 -0.1072 0.0000 0.0015 2 -0.1072 -0.0496 0.0000 0.0015 3 -0.4944 -0.5866 0.0000 0.0837 4 -0.5866 0.4944 0.0000 0.0837 5 0.0000 0.0000 -0.4860 0.0358 Ground to excited state transition velocity dipole Moments (Au): state X Y Z Osc. 1 -0.0049 0.0105 0.0000 0.0006 2 0.0105 0.0049 0.0000 0.0006 3 0.0946 0.1123 0.0000 0.0674 4 0.1123 -0.0946 0.0000 0.0674 5 0.0000 0.0000 0.1473 0.0636 Ground to excited state transition magnetic dipole Moments (Au): state X Y Z 1 0.2173 0.1005 0.0000 2 0.1005 -0.2173 0.0000 3 -0.0702 0.0591 0.0000 4 0.0591 0.0702 0.0000 5 0.0000 0.0000 0.0000 <0|del|b> * (Au), Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss) state X Y Z R(velocity) 1 -0.0011 0.0011 0.0000 0.0005 2 0.0011 -0.0011 0.0000 0.0003 3 -0.0066 0.0066 0.0000 0.0003 4 0.0066 -0.0066 0.0000 0.0005 5 0.0000 0.0000 0.0000 0.0000 <0|r|b> * (Au), Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss) state X Y Z R(length) 1 0.0108 -0.0108 0.0000 0.0000 2 -0.0108 0.0108 0.0000 0.0000 3 0.0347 -0.0347 0.0000 0.0003 4 -0.0347 0.0347 0.0000 0.0006 5 0.0000 0.0000 0.0000 0.0000 <0|del|b> * (Au) state X Y Z Osc.(frdel) 1 -0.0002 -0.0011 0.0000 0.0009 2 -0.0011 -0.0002 0.0000 0.0009 3 -0.0468 -0.0659 0.0000 0.0751 4 -0.0659 -0.0468 0.0000 0.0751 5 0.0000 0.0000 -0.0716 0.0477 Ground to excited state transition densities written to RWF 633 Excitation energies and oscillator strengths: Excited state symmetry could not be determined. Excited State 1: Singlet-?Sym 4.2696 eV 290.39 nm f=0.0015 14 -> 16 0.67497 15 -> 16 -0.15035 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Excited state symmetry could not be determined. Excited State 2: Singlet-?Sym 4.2696 eV 290.39 nm f=0.0015 14 -> 16 0.15035 15 -> 16 0.67497 Excited state symmetry could not be determined. Excited State 3: Singlet-?Sym 5.8059 eV 213.55 nm f=0.0837 12 -> 16 0.53061 13 -> 16 0.42029 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 5.8059 eV 213.55 nm f=0.0837 12 -> 16 -0.42029 13 -> 16 0.53061 Excited state symmetry could not be determined. Excited State 5: Singlet-?Sym 6.1887 eV 200.34 nm f=0.0358 11 -> 16 0.61605 14 -> 17 -0.23494 15 -> 18 -0.23494 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Alpha occ. eigenvalues -- -66.18925 -19.16451 -19.15680 -5.38069 -3.73457 Alpha occ. eigenvalues -- -3.73457 -3.72826 -1.02532 -0.99745 -0.49509 Alpha occ. eigenvalues -- -0.42004 -0.41249 -0.41249 -0.36845 -0.36845 Alpha virt. eigenvalues -- -0.15092 -0.05070 -0.05070 0.10443 0.14496 Alpha virt. eigenvalues -- 0.14496 0.26354 0.48750 0.50598 0.50611 Alpha virt. eigenvalues -- 0.60838 0.60838 0.70291 0.77867 0.77867 Alpha virt. eigenvalues -- 0.79896 0.87219 0.87219 1.04555 1.04555 Alpha virt. eigenvalues -- 1.06588 1.10087 1.29951 1.58702 2.76327 Alpha virt. eigenvalues -- 2.76327 2.78702 2.78702 2.78752 2.78752 Alpha virt. eigenvalues -- 3.03711 3.03711 3.33572 3.45872 4.71225 Alpha virt. eigenvalues -- 4.71225 4.80413 4.80413 4.90579 4.95963 Alpha virt. eigenvalues -- 5.80867 11.13101 11.13101 11.57962 49.71085 Alpha virt. eigenvalues -- 49.84146 140.88491 Condensed to atoms (all electrons): 1 2 3 1 Si 11.884046 0.480085 0.483616 2 O 0.480085 8.178926 -0.016134 3 O 0.483616 -0.016134 8.041893 Mulliken atomic charges: 1 1 Si 1.152253 2 O -0.642877 3 O -0.509376 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 Si 1.152253 2 O -0.642877 3 O -0.509376 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.9117 Tot= 0.9117 Quadrupole moment (field-independent basis, Debye-Ang): XX= -19.6706 YY= -19.6706 ZZ= -32.3653 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 4.2316 YY= 4.2316 ZZ= -8.4632 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -4.2858 XYY= 0.0000 XXY= 0.0000 XXZ= -0.4094 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.4094 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -19.0335 YYYY= -19.0335 ZZZZ= -199.5605 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -6.3445 XXZZ= -33.6944 YYZZ= -33.6944 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 8.965071050056D+01 E-N=-1.225975489219D+03 KE= 4.392371201647D+02 Test job not archived. 1|1|UNPC-UNK|SP|RTD-B3P86-FC|6-311G(d,p)|O2Si1|PCUSER|22-Nov-2009|0||# CIS-B3P86/6-311G(D,P) NOSYMM CIS=(ROOT=1,NSTATES=5) FIELD=Z+100 TEST| |Title Card Required||0,1|Si|O,1,1.516201|O,1,1.50604,2,180.||Version= x86-Win32-G03RevB.02|HF=-440.5281558|RMSD=6.187e-009|PG=C*V [C*(O1Si1O 1)]||@ The most important thing in communication is to hear what isn't being said. -- Peter F. Drucker Job cpu time: 0 days 0 hours 0 minutes 36.0 seconds. File lengths (MBytes): RWF= 19 Int= 0 D2E= 0 Chk= 11 Scr= 1 Normal termination of Gaussian 03 at Sun Nov 22 15:08:09 2009. |
2楼2009-11-22 21:55:55













回复此楼