| 查看: 676 | 回复: 1 | ||
| 【奖励】 本帖被评价1次,作者MolAICal增加金币 0.8 个 | ||
[资源]
一篇扩散模型的Nature Machine Intelligence论文和Elsevier上的深度学习药物书籍
|
||
|
各位好, 1. 之前在论坛中推荐了 “使用几何深度学习进行3d药物分子设计的方法和应用”:https://muchong.com/t-16189317-1,本课题组设计了新的自适应扩散模型,提出自适应自回归扩散方法(adaptive autoregressive diffusion approach),开发并训练出hudiff深度学习模型,包含针对常规抗体的hudiff-ab与纳米抗体的 hudiff-nb两个核心模块。发表在nature machine intelligence上,文章题目:an adaptive autoregressive diffusion approach to design active humanized antibodies and nanobodies, Nature Machine Intelligence (2025), https://www.nature.com/articles/s42256-025-01120-9 ,文章可以从附件中下载 ,欢迎讨论。 2. 并编著一本深度学习药物设计书籍《deep learning in drug design: methods and applications》,链接:https://doi.org/10.1016/c2023-0-52311-0 或 https://www.sciencedirect.com/book/9780443329081 或 https://shop.elsevier.com/books/deep-learning-in-drug-design/bai/978-0-443-32908-1 书籍有版权问题,应该可以通过学校订阅的数据库下载。欢迎讨论。 全书分为23章: part 1: deep learning theories and methods for drug design 1. chapter 1 molecular representations in deep learning 2. chapter 2 cnns in drug design 3. chapter 3 gnns in drug design 4. chapter 4 rnns and lstm in drug design 5. chapter 5 deep reinforcement learning in drug design 6. chapter 6 transformer and drug design 7. chapter 7 generative models for drug design 8. chapter 8 geometric graph learning for drug design 9. chapter 9 self-supervised learning for drug discovery 10. chapter 10 transfer learning and meta-learning for drug discovery 11. chapter 11 explainable artificial intelligence for drug design models 12. chapter 12 large models in drug design part 2: deep learning applications in drug design 13. chapter 13 deep learning for protein secondary structure prediction 14. chapter 14 deep learning in protein structure prediction 15. chapter 15 deep learning for affinity prediction and interface prediction in molecular interactions 16. chapter 16 deep learning for complex structure prediction in molecular interactions 17. chapter 17 deep learning in chemical synthesis and retrosynthesis 18. chapter 18 deep learning for adme prediction 19. chapter 19 deep learning for toxicity prediction 20. chapter 20 deep learning for tcr-pmhc binding prediction 21. chapter 21 deep learning for b-cell epitope prediction and receptor-antigen binding prediction 22. chapter 22 deep learning for antigen-specific antibody design 23. chapter 23 ethical and regulatory of artificial intelligence in drug design |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Bai_Nature_Machine_Intelligence.pdf
2025-10-02 18:51:36, 9.3 M
» 猜你喜欢
求标准粉末衍射卡号 ICDD 01-076-1802
已经有0人回复
新西兰Robinson研究所招收全奖PhD
已经有0人回复
物理学I论文润色/翻译怎么收费?
已经有98人回复
石墨烯转移--二氧化硅衬底石墨烯
已经有0人回复
笼目材料中量子自旋液体基态的证据
已经有0人回复
数学教学论硕士可以读数学物理博士吗?
已经有0人回复
德国亥姆霍兹Hereon中心汉堡分部招镁合金腐蚀裂变SCC课题方向2026公派博士生
已经有4人回复
澳门大学 应用物理及材料工程研究院 潘晖教授课题组诚招博士后
已经有11人回复
求助NH4V4O10晶体的CIF文件
已经有0人回复
英国全奖博士招聘-深度学习与量子物理
已经有0人回复
间接带隙半导体有效质量求助
已经有0人回复
» 本主题相关商家推荐: (我也要在这里推广)
简单回复
2025-10-16 05:50
回复
五星好评 顶一下,感谢分享!











回复此楼
