| 查看: 1139 | 回复: 11 | |||||
| 当前主题已经存档。 | |||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||
yexuqing木虫之王 (文学泰斗)
太阳系系主任
|
[交流]
【专题】探寻“锂离子充电电池之后的新电池”
|
||||
|
探寻“锂离子充电电池之后的新电池”(一):让能量密度达到“7倍” 2009/11/05 00:00 打印 E-mail ![]() 探寻“锂离子充电电池之后的新电池”(点击放大) 与现有锂离子充电电池相比,重量能量密度提高约7倍,成本降至1/40。这是日本经济产业省提出的电动汽车(EV)用电池的性能目标。 这是在日本经济产业省2006年8月的研究会上发表的《对新一代汽车电池的建议》报告中提出的2030年目标值。报告发表已有3年,作为电池发展的路线图,至今依然受到重视。 “7倍”的能量密度的确很有必要。从2009年推出的EV来看,在持续行驶距离上,三菱汽车的“i MiEV”为160km,富士重工业的“斯巴鲁插电式STELLA”为80km。按照“在城市内使用”的预期,在EV刚刚开始导入的2009年,这样的性能还算说得过去。但今后要想整体取代汽油车的话,这样的性能明显实力不足。 让能量密度达到“7倍” 能量密度提高至目前“7倍”的电池,至少不会是现在的锂离子充电电池。只要使用的是LiC6(嵌锂石墨)负极、LiCoO2(钴酸锂)或LiMn2O4(锰酸锂)正极,以及电解质(有机溶媒)这样的“三角组合”,无论怎么改进,都摆脱不了材料本身的束缚。上述三类材料均存在理论上的极限,所以性能无望获得飞跃性提高。 为了突破这一障碍,开发超越锂离子充电电池极限的电池的有关研究正在推进之中。目的是打破三角组合中的一角,使性能大幅提高。具体的做法包括使用离子液体的锂离子充电电池、全固体型锂离子充电电池,以及锂-空气电池等。 目前,开发上述电池的有日本大阪府立大学、关西大学、产业技术综合研究所、电力中央研究所等研究机构。企业还不是主角。 不过,有众多汽车厂商向这些研究机构发出了合作意向。其中,丰田汽车宣布,已经着手与大阪府立大学展开共同研究。 在目前的锂离子充电电池中,种种问题的根源均来自电解质使用的有机溶媒。有机溶媒容易着火或泄漏。虽然锂本身着火的话也很危险,但有机溶媒有可能引发大事故。 另外,只要有溶媒存在,就会“稀释”电解质。而进行工作的是离子,因此多余的溶媒会给工作造成障碍,从而拖累性能指标,使能量密度难以达到“7倍”。(未完待续,记者:滨田基彦) |
» 收录本帖的淘帖专辑推荐
Lithium-ion Batteries锂离子电池资料集锦 | 南笑天《能源、材料、设备、工艺》 |
» 猜你喜欢
大连工业大学招收储能电池方向博士1名
已经有0人回复
《把心放慢,世界就会温柔起来》
已经有0人回复
分析化学论文润色/翻译怎么收费?
已经有120人回复
钠离子硬碳负极扣式半电池组装都没有电流!!!
已经有2人回复
Ni元素XPS分析
已经有1人回复
广东以色列理工材料系能源与电子材料课题组——博士(以色列理工学位)
已经有3人回复
青岛大学化学化工学院分子测量学研究院2026年招收博士研究生
已经有0人回复
求一份origin2019以上版本的origin软件压缩包
已经有1人回复
电化学基础知识与资源网站
已经有2人回复
宁夏大学国家重点实验室膜分离课题组招收2026级博士生
已经有0人回复
» 本主题相关商家推荐: (我也要在这里推广)

yexuqing
木虫之王 (文学泰斗)
太阳系系主任
- ECEPI: 2
- 应助: 11 (小学生)
- 金币: 199152
- 散金: 5
- 红花: 126
- 沙发: 725
- 帖子: 167420
- 在线: 4698.3小时
- 虫号: 88288
- 注册: 2005-08-23
- 专业: 数论
|
探寻“锂离子充电电池之后的新电池”(三):找到了可用作电解质的“盐” 2009/11/09 00:00 打印 E-mail 上接本站报道: 探寻“锂离子充电电池之后的新电池”(二):用离子液体让电池工作 探寻“锂离子充电电池之后的新电池”(一):让能量密度达到“7倍” 锂-空气电池首次实用化 找到了可用作电解质的“盐” ![]() 图4:FSI的结构两侧为F。(点击放大) 石川预测,一种名为FSI(Fluoro Sulfonyl Imide)的负离子有望成为替代TFSI的物质。这种物质与TFSI不同,左右两侧带有的并非是CF3,而是F(图4)。F比CF3小,因此减小了整体大小。如上所述,离子小的话,电荷密度就会变大,容易形成结晶,但这种程度大小的离子,越小粘性就越容易降低,效果就越好。原因是离子液体是通过离子抵抗液体本身的粘性进行运动来推动电荷的。 上面一直在说负离子,其实正离子也有多种选择。比如,可以使用名为EMI(1-ethyl-3-methylimidazolium)的物质。在融点方面,使用TFSI的盐为-18℃,使用FSI的盐为-12.9℃,实际应用时没有大的差别。而25℃下的粘性不同,FSI从32.6mPa·s降至17.9mPa·s,降低了约一半。而且,FSI用于电解质时,体现性能的离子导电率也从9.1mS/cm升至16.5mS/cm,提高了近一倍。这些指标虽然不及目前普遍使用的有机溶媒,但与有机溶媒属同一级别。这样,FSI便有望应用到电池上。 在实际对试制电池进行实验后,得到了未曾预料到的结果:FSI与TFSI不同,不会损伤负极。而TFSI存在用于电池时会损伤负极的严重问题。而且原因不明。 虽然目前尚未到评价性能的阶段,但从不会腐蚀负极这一点来说,至少工作性能已得到基本证实。由于“富有潜力”(关西大学的石川),因此性能今后还将不断提高。 实现全固体电池的粒子包覆技术 弃用有机溶媒的第二途径就是全固体电池。正极、负极原本就是固体,接下来只需将电解质变成固体即可。大阪府大学一直在研究使用硫化物类电解质的全固体电池。比如,加热Li2S-P2S5类玻璃进行结晶化后的电池,其室温下的导电率达到了10-3S/cm以上(图5)。已经达到与目前使用的液体电解质相同的水平。而且,导电率还有可能进一步提高,有望成为达成“7倍”这一目标的“黑马”。 ![]() 图5:高锂离子导电性玻璃陶瓷的导电率温度依存性与多种玻璃及结晶材料比较。(点击放大) ![]() 图6:堆积型电池的结构(点击放大) 大阪府大学于09年4月与丰田共同发表了用于全固体电池的粒子包覆技术。全固体锂充电电池有薄膜型和堆积型。要想在汽车上使用,容量是决定性因素,因此大阪府大学对能够提高容量的堆积型展开了大力开发。具体做法是将负极活性物质、正极活性物质及固体电解质三样分别制成粒子,按照浓淡层次法逐渐改变混合比例,进行掺合、重叠(图6)。 该方法的难点在于粒界的接触阻力。这种情况下,如果中央的电解质为液体,便可利用“濡湿”现象来确保固体与液体的接触。而固体之间不同,微观来看只有一点接触。对此,业内一直采取施加压力,使粒子发生细微变形,以此来增加接触面积的开发思路。 大阪府大学却选择了另一方向作为突破口,通过用固体电解质薄膜包覆电极活性物质微粒子的表面,来降低接触阻力。电极活性物质采用LiCoO2(钴酸锂),固体电解质采用Li2S-P2S5类材料,粒子包覆采用PLD(脉冲激光烧蚀沉积)法。 PLD是薄膜沉积方法之一。就是用激光轰击靶材,使靶材溅射出来的物质在底板上形成薄膜。这里的做法是,在上面设置靶材,在下面设置底板。一边振动底板,让LiCoO2粒子流动,一边使固体电解质沉积于粒子表面,形成薄膜。用该粒子制造全固体单元时,与利用未经包覆的粒子制造时相比,单元的容量更大。粒子包覆的有效性得到证实,使全固体电池向实用化迈进了一大步。(未完待续,记者:滨田基彦) 更多请看明日刊出的(四):首次实用化的锂-空气电池 |

7楼2009-11-09 09:22:29
2楼2009-11-05 09:04:38
hnzndx
木虫 (正式写手)
- 应助: 26 (小学生)
- 金币: 4006.8
- 散金: 55
- 红花: 4
- 帖子: 525
- 在线: 376.9小时
- 虫号: 443452
- 注册: 2007-10-27
- 性别: GG
- 专业: 冶金物理化学与冶金原理
3楼2009-11-05 11:16:25
yexuqing
木虫之王 (文学泰斗)
太阳系系主任
- ECEPI: 2
- 应助: 11 (小学生)
- 金币: 199152
- 散金: 5
- 红花: 126
- 沙发: 725
- 帖子: 167420
- 在线: 4698.3小时
- 虫号: 88288
- 注册: 2005-08-23
- 专业: 数论

4楼2009-11-05 11:19:53














回复此楼




