| 查看: 594 | 回复: 0 | ||
| 【悬赏金币】回答本帖问题,作者xiaochoujiao将赠送您 10 个金币 | ||
xiaochoujiao新虫 (小有名气)
|
[求助]
ACO测试2维的Rosenbrock函数 和Step函数
|
|
|
本人刚学Matlab,ACO测试2维的Rosenbrock函数 和Step函数,但是都在同一个位置卡住了,请看看,然后提供正确的代码可以吗? % Rosenbrock函数定义 function y = rosenbrock(x) y = 0; for i = 1:length(x) - 1 y = y + 100 * (x(i + 1) - x(i)^2)^2 + (x(i) - 1)^2; end end % 蚁群优化算法主函数 function [minVal, maxVal, meanVal, stdVal] = aco_rosenbrock(dim) % 蚁群算法参数设置 numAnts = 50; % 蚂蚁数量 numIterations = 100; % 迭代次数 evaporationRate = 0.5; % 信息素蒸发率 alpha = 1; % 信息素重要程度因子 beta = 2; % 启发式信息重要程度因子 q0 = 0.9; % 选择概率参数 % 初始化信息素矩阵 pheromoneMatrix = ones(numAnts, dim); % 用于存储每次迭代的最优解 bestSolutions = zeros(numIterations, 1); % 多次迭代 for iteration = 1:100 % 蚂蚁路径构建 antSolutions = zeros(numAnts, dim); for ant = 1:numAnts for d = 1:dim % 计算选择概率 probabilities = zeros(numAnts, 1); for i = 1:numAnts probabilities(i) = (pheromoneMatrix(i, d)^alpha) * (1 / rosenbrock([antSolutions(i, 1:d-1), randn]))^beta; end probabilities = probabilities / sum(probabilities); % 根据概率选择下一个位置 if rand < q0 [~, selectedIndex] = max(probabilities); else selectedIndex = rouletteWheelSelection(probabilities); end antSolutions(ant, d) = randn; end end % 计算每只蚂蚁的目标函数值 antValues = zeros(numAnts, 1); for ant = 1:numAnts antValues(ant) = rosenbrock(antSolutions(ant, );end % 更新全局最优解 [globalBestValue, globalBestIndex] = min(antValues); bestSolutions(iteration) = globalBestValue; % 更新信息素矩阵 pheromoneMatrix = (1 - evaporationRate) * pheromoneMatrix; for ant = 1:numAnts for d = 1:dim pheromoneMatrix(ant, d) = pheromoneMatrix(ant, d) + 1 / antValues(ant); end end end % 计算最小值、最大值、平均值和标准差 minVal = min(bestSolutions); maxVal = max(bestSolutions); meanVal = mean(bestSolutions); stdVal = std(bestSolutions); end % 轮盘赌选择函数 function selectedIndex = rouletteWheelSelection(probabilities) cumulativeProbabilities = cumsum(probabilities); randomNumber = rand; for i = 1:length(probabilities) if randomNumber <= cumulativeProbabilities(i) selectedIndex = i; break; end end end % 调用函数并输出综合结果 dim = 2; % 这里设置维度,可以根据需要修改为其他值 [minVal, maxVal, meanVal, stdVal] = aco_rosenbrock(dim); fprintf('维度为 %d时:\n', dim); fprintf('最小值: %.4f\n', minVal); fprintf('最大值: %.4f\n', maxVal); fprintf('平均值: %.4f\n', meanVal); fprintf('标准差: %.4f\n', stdVal); % Step函数定义 function y = stepFunction(x) y = sum(floor(x + 0.5).^2); end % 蚁群优化算法主函数 function [minVal, maxVal, meanVal, stdVal] = aco_step(dim) % 蚁群算法参数设置 numAnts = 50; % 蚂蚁数量 numIterations = 100; % 迭代次数 evaporationRate = 0.5; % 信息素蒸发率 alpha = 1; % 信息素重要程度因子 beta = 2; % 启发式信息重要程度因子 q0 = 0.9; % 选择概率参数 % 初始化信息素矩阵 pheromoneMatrix = ones(numAnts, dim); % 用于存储每次迭代的最优解 bestSolutions = zeros(numIterations, 1); % 多次迭代 for iteration = 1:numIterations % 蚂蚁路径构建 antSolutions = zeros(numAnts, dim); for ant = 1:numAnts for d = 1:dim % 计算选择概率 probabilities = zeros(numAnts, 1); for i = 1:numAnts probabilities(i) = (pheromoneMatrix(i, d)^alpha) * (1 / stepFunction([antSolutions(i, 1:d-1), randn]))^beta; end probabilities = probabilities / sum(probabilities); % 根据概率选择下一个位置 if rand < q0 [~, selectedIndex] = max(probabilities); else selectedIndex = rouletteWheelSelection(probabilities); end antSolutions(ant, d) = randn; end end % 计算每只蚂蚁的目标函数值 antValues = zeros(numAnts, 1); for ant = 1:numAnts antValues(ant) = stepFunction(antSolutions(ant, );end % 更新全局最优解 [globalBestValue, globalBestIndex] = min(antValues); bestSolutions(iteration) = globalBestValue; % 更新信息素矩阵 pheromoneMatrix = (1 - evaporationRate) * pheromoneMatrix; for ant = 1:numAnts for d = 1:dim pheromoneMatrix(ant, d) = pheromoneMatrix(ant, d) + 1 / antValues(ant); end end end % 计算最小值、最大值、平均值和标准差 minVal = min(bestSolutions); maxVal = max(bestSolutions); meanVal = mean(bestSolutions); stdVal = std(bestSolutions); end % 轮盘赌选择函数 function selectedIndex = rouletteWheelSelection(probabilities) cumulativeProbabilities = cumsum(probabilities); randomNumber = rand; for i = 1:length(probabilities) if randomNumber <= cumulativeProbabilities(i) selectedIndex = i; break; end end end % 调用函数并输出综合结果 dim = 2; % 这里设置维度,可以根据需要修改为其他值 [minVal, maxVal, meanVal, stdVal] = aco_step(dim); fprintf('维度为 %d时:\n', dim); fprintf('最小值: %.4f\n', minVal); fprintf('最大值: %.4f\n', maxVal); fprintf('平均值: %.4f\n', meanVal); fprintf('标准差: %.4f\n', stdVal); |
» 猜你喜欢
所感
已经有3人回复
要不要辞职读博?
已经有7人回复
不自信的我
已经有11人回复
北核录用
已经有3人回复
实验室接单子
已经有3人回复
磺酰氟产物,毕不了业了!
已经有8人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有10人回复
26申博(荧光探针方向,有机合成)
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有26人回复
2026年机械制造与材料应用国际会议 (ICMMMA 2026)
已经有4人回复












);
回复此楼