|
[ÇóÖú]
Matlab ÄâºÏ¶¯Á¦Ñ§²ÎÊýʱÉèÖõijõÖµ²»Í¬£¬Êä³öµÄ½á¹û²»Í¬Ôõô°ì£¿ÒÑÓÐ3È˲ÎÓë
ÎÒÔÚ×ö LH »úÀí¶¯Á¦Ñ§²ÎÊý¹À¼Æ£¬·¢ÏÖÉèÖõIJÎÊý³õÖµ²»Í¬Êä³öµÄ½á¹û¾Í²»Í¬£¬ÎÒͨ¹ýµ÷Õû²ÎÊý³õÖµÄÜʹ lnk ºÍ1/T ³ÊÏßÐÔÏà¹Ø£¬µ« lnK ºÍ1/T ¾Í²»³ÉÏßÐÔÁËÔõô°ì£¿ÎÒ¸ÃÔõôµ÷Õû²ÎÊý³õÖµ£¿ÒÔÏÂÊÇÎҵĴúÂë:
% Ö÷½Å±¾
% ²½Öè1: ¶ÁÈ¡ExcelÎļþÖеÄÊý¾Ý
filename = 'D:\×ÀÃæÎļþ\ÐÂ60.xlsx';
data = readtable(filename);
time = data{:, 't'}; % ʱ¼äÊý¾Ý
CA_exp_333K = data{:, 'CA'}; % 333KÏ·´Ó¦ÎïAµÄŨ¶ÈÊý¾Ý
CB_exp_333K = data{:, 'CB'}; % 333KÏÂÉú³ÉÎïBµÄŨ¶ÈÊý¾Ý
% ²½Öè2: ³õʼ²ÎÊý¹À¼Æ
params_initial = [0.5,0.5,0.5,0.5,0.5]; % ÐèÒª¸ù¾Ýʵ¼ÊÇé¿ö½øÐе÷Õû
lb=[0 0 0 0 0];
ub=[100 100 100 100 100];
% ʹÓ÷ÇÏßÐÔ×îС¶þ³Ë·¨ÄâºÏ²ÎÊý
options = optimoptions('lsqnonlin', 'Algorithm', 'levenberg-marquardt', 'Display', 'iter');
params_est = lsqnonlin(@(params) ObjFunc(params, time, CA_exp_333K, CB_exp_333K), params_initial, [], [], options);
% ʹÓÃÄâºÏ²ÎÊýÖØмÆËãŨ¶È
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
[t, C] = ode45(@(t, C) KineticModel2(t, C, params_est), time, [CA_exp_333K(1); CB_exp_333K(1)], options);
CA_pred = C(:, 1);
CB_pred = C(:, 2);
% ²½Öè3: ¼ÆËã×Ü·½²îºÍ (SST) ²¢¼ì²é
residuals = ObjFunc(params_est, time, CA_exp_333K, CB_exp_333K);
SST = sum(residuals.^2); % ¼ÆËã×Ü·½²îºÍ
% ²½Öè4: ¸ù¾ÝSSTÖµ»æÖÆͼÐλòÖØÐÂÉ趨³õÖµ
if SST < 1
% Èç¹ûSSTСÓÚ1£¬»æÖÆͼÐβ¢Êä³ö²ÎÊý
fprintf('ÄâºÏµÄ²ÎÊýֵΪ:\n');
fprintf('k: %f\n', params_est(1));
fprintf('K_A: %f\n', params_est(2));
fprintf('K_B: %f\n', params_est(3));
fprintf('K_H: %f\n', params_est(4));
fprintf('K_bc: %f\n', params_est(5));
fprintf('×Ü·½²îºÍ (SST): %f\n', SST); % Êä³ö×Ü·½²îºÍ
% »æÖÆʵÑéŨ¶ÈºÍ¼ÆËãŨ¶ÈÏà¹Øͼ
figure;
plot(time, CA_exp_333K, 'b-', time, CA_pred, 'r--');
hold on;
plot(time, CB_exp_333K, 'g-', time, CB_pred, 'k--');
legend('ʵÑéCA', 'ÄâºÏCA', 'ʵÑéCB', 'ÄâºÏCB');
xlabel('ʱ¼ä (min)');
ylabel('Ũ¶È (mol/L)');
title('ʵÑéŨ¶ÈÓë¼ÆËãŨ¶È¶Ô±È');
hold off;
else
% Èç¹ûSST´óÓÚ»òµÈÓÚ1£¬ÌáʾÐèÒªÖØÐÂÉ趨³õÖµ
fprintf('SSTÖµ¹ý´ó£¬ÐèÒªÖØÐÂÉ趨²ÎÊý³õÖµ¡£µ±Ç°SST: %f\n', SST);
% ÕâÀï¿ÉÒÔÌí¼Ó´úÂëÀ´µ÷Õû³õʼ²ÎÊý»ò²ÉÈ¡ÆäËû´ëÊ©
end
function dCdt = KineticModel2(t, C, params)
k = params(1);
K_A = params(2);
K_B = params(3);
K_H = params(4);
K_bc = params(5);
P_H2 = 3e3; % ÇâÆøѹÁ¦£¬µ¥Î»ÎªKPa
c_A = C(1);
c_B = C(2);
numerator = k * K_A * c_A * sqrt((K_H * P_H2) / K_bc);
denominator = (1 + K_A * c_A + K_B * c_B+ sqrt((K_H * P_H2) / K_bc))^2;
r = numerator / denominator;
dC_A_dt = -r;
dC_B_dt = r;
dCdt = [dC_A_dt; dC_B_dt];
end
function res = ObjFunc(params, time, CA_exp, CB_exp)
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
[t, C] = ode45(@(t, C) KineticModel2(t, C, params), time, [CA_exp(1); CB_exp(1)], options);
CA_pred = C(:, 1);
CB_pred = C(:, 2);
% ¼ÆËã×Ü·½²îºÍ
res = (CA_exp - CA_pred).^2 + (CB_exp - CB_pred).^2;
end
ÒÔÏÂͼƬÖÐÊÇÎÒµÄÊý¾Ý£¬¹òÇó´óÀÐÖ¸µ¼?
²ÎÊý³õֵͨ¹ý²éÎÄÏ׸ø³öµÄ·½·¨²»ÏÖʵ£¬ÒòΪÎÒ×öÕâ¸öûÓÐÈË×ö¹ý£¬ÀàËƵÄÎÄÏ׳õÖµ²î¾àÒ²ºÜ´ó£¬ÎÒ¾õµÃûÓÐʲô²Î¿¼¼ÛÖµ???¶øÇÒÎÒ²»Ì«Ã÷°×£¬±ÈÈçÎÒÓÐÎå¸ö²ÎÊý k¡¢KA¡¢KB¡¢KH¡¢Kbc£¬ÄÇÕâÎå¸ö²ÎÊý³õÖµÓ¦¸ÃÒ»ÑùÂð£¿
·¢×ÔСľ³æAndroid¿Í»§¶Ë |
|