24小时热门版块排行榜    

CyRhmU.jpeg
南方科技大学公共卫生及应急管理学院2025级博士研究生招生报考通知
查看: 866  |  回复: 0

yexuqing

木虫之王 (文学泰斗)

太阳系系主任

[交流] 融合忆阻器和数字内存计算处理助力高效边缘计算

融合忆阻器和数字内存计算处理助力高效边缘计算

▲ 作者:TAI-HAO WEN, JE-MIN HUNG, WEI-HSING HUANG, CHUAN-JIA JHANG, YUN-CHEN LO, HUNG-HSI HSU, ET AL.

▲ 链接:

https://www.science.org/doi/10.1126/science.adf5538

▲ 摘要:

人工智能(AI)边缘设备更倾向于采用高容量非易失性内存计算(CIM)来实现高能效和足够准确的快速唤醒响应。大多数先前的工作要么依据基于忆阻器的CIM,但因其耐用性有限而遭受精度损失且不支持训练;要么依据数字静态随机存取存储器(SRAM)的CIM,但受限于大面积制造需求和易失性存储。

研究组报道了一种使用忆阻器-SRAM CIM融合方案的AI边缘处理器,可同时利用数字SRAM CIM的高精度和电阻式随机存取存储器忆阻器CIM的高能效和存储密度。这也使自适应本地训练能够适应个性化特征和用户环境。

该融合处理器实现了高CIM容量、短唤醒-响应延迟(392微秒)、高峰值能效(77.64 TOPS/W)和稳健的精度(精度损失<0.5%)。这项工作表明,忆阻器技术已经超越了实验室开发阶段,现已具备用于AI边缘处理器的可制造性。

▲ Abstract:

Artificial intelligence (AI) edge devices prefer employing high-capacity nonvolatile compute-in-memory (CIM) to achieve high energy efficiency and rapid wakeup-to-response with sufficient accuracy. Most previous works are based on either memristor-based CIMs, which suffer from accuracy loss and do not support training as a result of limited endurance, or digital static random-access memory (SRAM)–based CIMs, which suffer from large area requirements and volatile storage. We report an AI edge processor that uses a memristor-SRAM CIM-fusion scheme to simultaneously exploit the high accuracy of the digital SRAM CIM and the high energy-efficiency and storage density of the resistive random-access memory memristor CIM. This also enables adaptive local training to accommodate personalized characterization and user environment. The fusion processor achieved high CIM capacity, short wakeup-to-response latency (392 microseconds), high peak energy efficiency (77.64 teraoperations per second per watt), and robust accuracy (<0.5% accuracy loss). This work demonstrates that memristor technology has moved beyond in-lab development stages and now has manufacturability for AI edge processors.
回复此楼
----
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 yexuqing 的主题更新
普通表情 高级回复(可上传附件)
信息提示
请填处理意见